9.5 Electronegativity and Bond Polarity

 There is no clear cut between ionic and covalent bonds – pure ionic and pure covalent bonds are only limiting models

Electronegativity

- Electronegativity (EN) the ability of an atom to attract the shared electrons in a bond (electron-pulling power)
 - In general, EN increases with increasing the ionization energy and electron affinity of atoms
 - EN increases up and to the right in the periodic table (opposite to the atomic size trend)
- EN can be used to determine the oxidation numbers of elements in compounds
 - The more electronegative atom in a bond is assigned all shared (bonding) electrons
 - Each atom in a bond is assigned all unshared (lone pair) electrons
- \Rightarrow **Ox**# = (#valence e⁻) (#shared e⁻ + #unshared e⁻)

Example: HCl (Cl is more EN than H)

$$Cl \to Ox \# = 7 - (2 + 6) = -1$$

H \to Ox \# = 1 - (0 + 0) = +1
H \cdot \c

Polar Covalent Bonds

- The EN difference (ΔEN) between the bonded atoms determines the character of a covalent bond
 - Nonpolar covalent bond $\Delta EN = 0 \rightarrow$ equal sharing of the bonding electrons (H–H, F–F, ...)
 - Polar covalent bond $\Delta EN > 0 \rightarrow$ unequal sharing of the bonding electrons (H–O, C–F, ...)
 - The more electronegative atoms acquire **partial negative charges** (have greater share of the bonding electrons)
 - The less electronegative atoms acquire partial positive charges

Formation of a **bond dipole** expressed by a **polar arrow**

- Polar arrow points from (δ +) to (δ -)
- Bond polarity increases with increasing ΔEN

Example:

Which of the following bonds is more polar? **O–H** (in H_2O) or **N–H** in (NH₃)

EN order \rightarrow H < N < O

 $\Rightarrow \Delta EN(O-H) > \Delta EN(N-H)$

 \Rightarrow the O-H bond is more polar

9.6 Metallic Bonding (see page 382 in textbook)

The Electron-sea Model

- A metallic solid can be viewed as an array of metal cations (nuclei + core electrons) attracted by a sea of their valence electrons
 - The valence electrons are delocalized (shared between all atoms)
- Properties of metals
 - Good electrical and heat conductors due to the mobility of the electron-sea
 - Moderately high melting points the attractions between the cations and the electron-sea are not greatly disturbed by melting

- High boiling points the metal ions and electrons have to be separated
- Malleable and ductile metal cations can slide past each other without disturbing the interaction with the electron-sea too much

