- Expanded valence shells (extended octets) more than $\mathbf{8} \mathrm{e}^{-}$around a central atom
- Extended octets are formed only by atoms with vacant d-orbitals in the valence shell (p-elements from the third or later periods)
- Extended octets form when:
- There are too many electrons $\left(\mathbf{n}_{\text {need }}<\mathbf{n}_{\text {rem }}\right)$ or more than 4 atoms are bonded to the central atom - electron-rich structures \rightarrow place the extra electrons at the central atom
- Structures with lower formal charges can be achieved by forming an extended octet

Example: Write the Lewis structure of $\mathbf{X e F}_{4}$.
$n_{\text {tot }}=8(\mathrm{Xe})+4 \times 7(\mathrm{~F})=36$
$n_{\text {rem }}=36-8=28 \quad n_{\text {need }}=0(X e)+4 \times 6(F)=24$
$\mathbf{n}_{\text {need }}<\mathbf{n}_{\text {rem }}$
4 extra $\mathbf{e}^{-} \Rightarrow$ add $\mathbf{2}$ lone pairs at $\mathbf{X e}$

Example: Select the favored resonance structure of the $\mathbf{P O}_{4}{ }^{3-}$ anion.

(a)
(b)

Formal charges:
(a) $\mathrm{O} \rightarrow 6-(6+1)=-1 \quad \mathrm{P} \rightarrow 5-(0+4)=+1$
(b) $\mathrm{O}-\rightarrow 6-(6+1)=-1 \quad P \rightarrow 5-(0+5)=0$
$\mathrm{O}=\rightarrow \mathbf{6}(4+2)=0$

\Rightarrow Average bond enthalpies can be used to estimate the enthalpy changes of reactions in the gas phase (only approximate values)

$$
\Delta H_{r}{ }^{o}=\Delta H_{B}(\text { broken })-\Delta H_{B}(\text { formed })
$$

- Energy is absorbed (+) to break the bonds of the reactants and emitted (-) during forming the bonds of the products

$\Delta H_{1}^{0}=+$ sum of BE
$\Delta H_{2}^{0}=-$ sum of $B E$

REACTANTS

9.4 Using Lewis Structures and Bond Energies to Calculate $\boldsymbol{\Delta H}$ of Reaction

- Any reaction can be represented as a two step process in which:
- All reactant bonds break to give individual atoms
- All product bonds form from the individual atoms

Example: Estimate the standard enthalpy of the reaction $\mathbf{C H}_{4}(\mathrm{~g})+\mathbf{2 F} \mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathbf{C H}_{2} \mathrm{~F}_{2}(\mathrm{~g})+\mathbf{2 H F}(\mathrm{g})$

1. Lewis structures are needed to get the bond order
2. Bonds broken (reactants):

4 C-H ($\mathbf{4 1 2} \mathrm{kJ} / \mathrm{mol}$), $2 \mathrm{~F}-\mathrm{F}$ ($\mathbf{1 5 8} \mathrm{kJ} / \mathrm{mol})$
3. Bonds formed (products):

2 C-H ($412 \mathrm{~kJ} / \mathrm{mol}$), 2 C-F ($484 \mathrm{~kJ} / \mathrm{mol}$), $2 \mathrm{H}-\mathrm{F}$ (565 kJ/mol)
$\Delta H^{o}=\Delta H_{B}($ broken $)-\Delta H_{B}($ formed $)=[4 \times 412+2 \times 158]$

$$
-[2 \times 412+2 \times 484+2 \times 565]=-958 \mathrm{~kJ}
$$

(this value is only an estimate, the exact value can be calculated using $\Delta \boldsymbol{H}_{f}{ }^{\boldsymbol{o}}$ data)

10.2 Molecular Shape and the ValenceShell Electron-Pair Repulsion Model

- The chemical and physical properties of compounds are intimately related to their molecular shapes
- Molecular shapes (geometries) depend on the three-dimensional arrangement of atoms in space
- Bond distances, bond angles, ...
- Lewis structures do not represent the true shape of molecules
- Molecular shapes are studied experimentally, but can be predicted using various theoretical models
- Valence-shell electron-pair repulsion (VSEPR) model - the electron-groups around a central atom are arranged as far from one another as possible in order to minimize the repulsion between them
- Electron-groups are regions with high \mathbf{e}^{-}density (lone pairs or bonds) around the central atom
- The electron-group arrangement that minimizes the repulsion depends on the number of electrongroups that repel each other:

- The five most common electron-group arrangements and their characteristic angles:

OCTAHEDRAL

- Both bonding and nonbonding \mathbf{e}^{-}groups are considered in the electron-group arrangement
- Only the bonding e^{-}groups are considered in the molecular shape since they determine the positions of the atoms (lone pairs are ignored)
- VSEPR classes - representations in the form $\mathbf{A} \mathbf{X}_{\mathbf{m}} \mathbf{E}_{\mathbf{n}}$, where \mathbf{A} is the central atom, \mathbf{X} is an atom attached to it, and \mathbf{E} is a nonbonding group (lone pair)
$\Rightarrow \boldsymbol{n}$ is the number of nonbonding groups (lone pairs) and \boldsymbol{m} is the number of bonding groups (atoms attached to the central atom)

- VSEPR classes $\mathbf{A X}_{\mathbf{2}}, \mathbf{A X}_{\mathbf{3}}, \mathbf{A X}_{\mathbf{4}}, \mathbf{A X}_{\mathbf{5}} \& \mathbf{A X}_{\mathbf{6}}$
- All electron-groups surrounding the central atom are bonding groups
- If all surrounding atoms (\mathbf{X}) are the same, the bond angles are equal to the characteristic angles of the arrangement
- The molecular shape and electron-group arrangement have the same name:

Examples:

Examples:

$$
\ddot{\mathrm{C}} \mathrm{l}-\mathrm{Be}-\ddot{\mathrm{C}} \mathrm{l}:
$$

Linear shape, bond angle of 180°

Trigonal planar shape, bond angles of 120°

- The VSEPR model treats multiple bonds in the same way as single bonds (a single bonding electron-group)
Example: $\mathrm{CO}_{3}{ }^{\mathbf{2 -}}$

\rightarrow Three atoms attached to a central atom $\left(\mathbf{A X}_{\mathbf{3}}\right) \rightarrow$ Trigonal planar shape, bond angles of 120°
\rightarrow Any one of the resonance structures can be used to predict the molecular shape
- The effect of double bonds on bond angles Example: $\mathbf{C l}_{\mathbf{2}} \mathbf{C O}$
\rightarrow Three atoms attached to the central atom, no lone pairs ($\mathbf{A X}_{3}$)
\Rightarrow Trigonal-planar shape
\rightarrow The bond angles deviate from the ideal values
\rightarrow The double bond has greater \mathbf{e}^{-} density and repels the single bonds stronger
$\Rightarrow \angle \mathrm{Cl}-\mathrm{C}-\mathrm{Cl}<120^{\circ}$
$\angle \mathrm{Cl}-\mathrm{C}-\mathrm{O}>120^{\circ}$

