- Expanded valence shells (extended octets) more than 8e⁻ around a central atom
 - Extended octets are formed only by atoms with vacant d-orbitals in the valence shell (p-elements from the third or later periods)
 - Extended octets form when:
 - There are too many electrons (n_{need} < n_{rem}) or more than 4 atoms are bonded to the central atom

 electron-rich structures → place the extra electrons at the central atom
 - Structures with **lower formal charges** can be achieved by forming an extended octet

Example: Write the Lewis structure of XeF_4 . $n_{tot} = 8(Xe) + 4 \times 7(F) = 36$ $n_{rem} = 36 - 8 = 28$ $n_{need} = 0(Xe) + 4 \times 6(F) = 24$ $n_{need} < n_{rem}$ 4 extra $e^- \Rightarrow$ add 2 lone pairs at Xe F - Xe - F $\vdots \ddot{F} - Xe - \ddot{F} \vdots$ F - Xe - F $\vdots \ddot{F} = Xe - \ddot{F} \vdots$ F = Xe - F $\vdots \ddot{F} = Xe - \ddot{F} \vdots$ F = Xe - F $\vdots \ddot{F} = Xe - \ddot{F} \vdots$

Example: Select the favored resonance structure of the PO_4^{3-} anion. $: \ddot{O}: \square^{3-} : \ddot{O}: \square^{3-}$ $: \ddot{O}: \square^{2-} P - \ddot{O}: \square P - \ddot{O}:$ $: \ddot{O}: \square P - \ddot{O}: \square P - \ddot{O}: \square P - \ddot{O}:$ $: \ddot{O}: \square P - \ddot{O}: \square P - \ddot{O}: \square P - \ddot{O}: \square P - \ddot{O}:$ $: \ddot{O}: \square P - \ddot{O}: \square$

- Structure (b) has an extended octet (10 e⁻) at the P atom
- Structure (b) is more favored (contributes more to the resonance hybrid) due to the lower formal charges

⇒ Average bond enthalpies can be used to estimate the enthalpy changes of reactions in the gas phase (only approximate values)

$\Delta H_r^o = \Delta H_B$ (broken) - ΔH_B (formed)

 Energy is absorbed (+) to break the bonds of the reactants and emitted (-) during forming the bonds of the products

9.4 Using Lewis Structures and Bond Energies to Calculate ΔH of Reaction

- Any reaction can be represented as a two step process in which:
 - All **reactant bonds break** to give individual atoms
 - All **product bonds form** from the individual atoms

Example: Estimate the standard enthalpy of the reaction $CH_4(g) + 2F_2(g) \rightarrow CH_2F_2(g) + 2HF(g)$ **1.** Lewis structures are needed to get the bond order **2.** Bonds broken (reactants): **4** C-H (412 kJ/mol), 2 F-F (158 kJ/mol) **3.** Bonds formed (products): **2** C-H (412 kJ/mol), 2 C-F (484 kJ/mol), 2 H-F (565 kJ/mol) $\Delta H^o = \Delta H_B$ (broken) - ΔH_B (formed) = $[4 \times 412 + 2 \times 158]$ $- [2 \times 412 + 2 \times 484 + 2 \times 565] = -958 kJ$ (this value is only an estimate, the exact value can be calculated using ΔH_f^o data)

10.2 Molecular Shape and the Valence-Shell Electron-Pair Repulsion Model

- The chemical and physical properties of compounds are intimately related to their molecular shapes
 - Molecular shapes (geometries) depend on the three-dimensional arrangement of atoms in space
 Bond distances, bond angles, ...
 - Lewis structures do not represent the true shape of molecules
 - Molecular shapes are studied experimentally, but can be predicted using various theoretical models

- Valence-shell electron-pair repulsion (VSEPR) model – the electron-groups around a central atom are arranged as far from one another as possible in order to minimize the repulsion between them
 - Electron-groups are regions with high e⁻ density (lone pairs or bonds) around the central atom
 - The **electron-group arrangement** that minimizes the repulsion depends on the number of electron-groups that repel each other:

- Both bonding and nonbonding e⁻ groups are considered in the electron-group arrangement
- Only the bonding e⁻ groups are considered in the molecular shape since they determine the positions of the atoms (lone pairs are ignored)
- VSEPR classes representations in the form AX_mE_n , where A is the central atom, X is an atom attached to it, and E is a nonbonding

group (lone pair) \Rightarrow *n* is the number of nonbonding groups (lone pairs) and *m* is the number of bonding groups (atoms attached to the central atom)

- VSEPR classes AX₂, AX₃, AX₄, AX₅ & AX₆
 - All electron-groups surrounding the central atom are **bonding groups**
 - If all surrounding atoms (X) are the same, the bond angles are equal to the characteristic angles of the arrangement
 - The **molecular shape** and electron-group arrangement have the same name:

The VSEPR model treats multiple bonds in the same way as single bonds (a single bonding electron-group)
Example: CO₃²⁻
∴O: ²⁻

• The effect of **double bonds** on **bond angles**

Example: Cl₂CO

- →**Three** atoms attached to the central atom, no lone pairs (AX₃)
- \Rightarrow Trigonal-planar shape
- →The **bond angles deviate** from the ideal values
- →The double bond has greater e⁻ density and repels the single bonds stronger
- $\Rightarrow \angle \text{Cl-C-Cl} < 120^{\circ}$
 - \angle Cl-C-O > 120°

