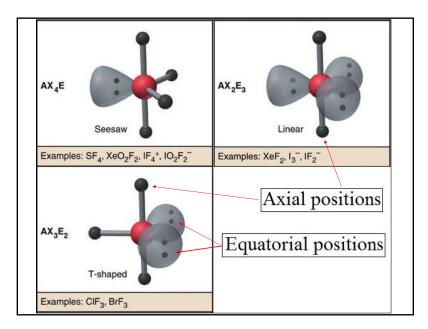
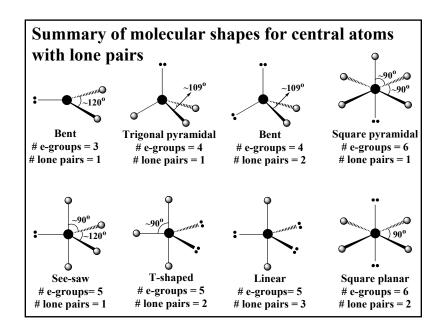
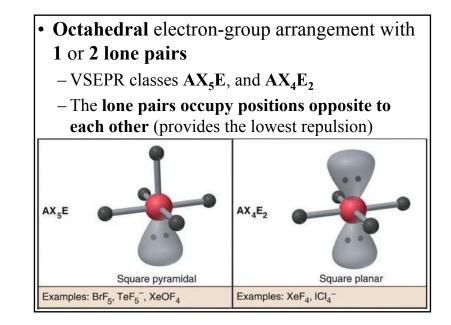


- \rightarrow Two atoms attached to the central atom + one lone pair (AX₂E) \rightarrow Bent shape
- →The lone pair is bulkier and repels the bonding pairs stronger → bond angle is less than 120°

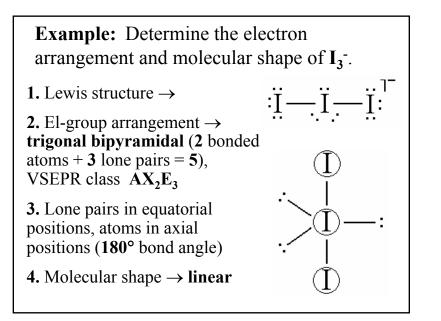
- Tetrahedral electron-group arrangement with two lone pairs
- \rightarrow Two atoms attached to the central atom + two lone pairs (AX₂E₂) \rightarrow Bent shape
- →The two lone pairs have even greater repelling effect → bond angles are less than 109.5°

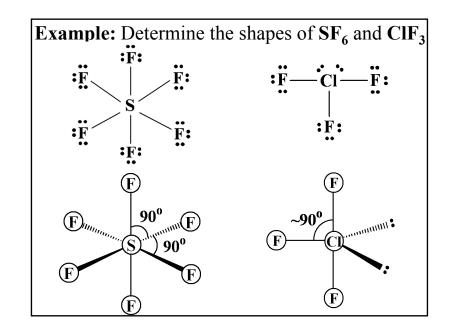




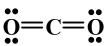

• Tetrahedral electron-group arrangement with one lone pair \rightarrow Three atoms attached to the central atom + one lone pair $(AX_3E) \rightarrow$ Trigonal pyramidal shape \rightarrow The lone pair is bulkier and repels the bonding pairs stronger \rightarrow bond angles are less than 109.5° Class Shape Example: NH₃ H - N - HAX₂E Trigonal pyramidal shape Trigonal pyramidal Bond angle of 107.3° Examples: NH₃, PF₃, ClO₃, H₃O⁺

- Strengths of electron group repulsions
 Ione pair-lone pair > lone pair-bonding pair > bonding pair-bonding pair
 ⇒In the electron arrangement, lone pairs occupy positions as far from one another and from bonding pairs as possible

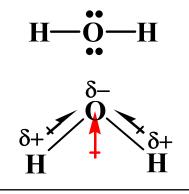

 Trigonal bipyramidal electron-group arrangement with 1, 2 or 3 lone pairs
 – VSEPR classes AX4E, AX3E2 and AX2E3
 - The lone pairs occupy *equatorial* positions (provides more space for the lone pairs and minimizes the repulsion)



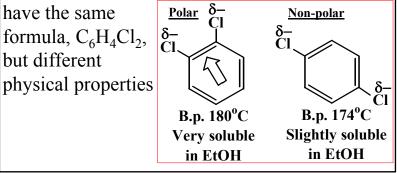
- **Steps** in determining molecular shapes using the VSEPR model:
 - Write the Lewis structure
 - Determine the electron-group arrangement, ideal bond angles and VSEPR class
 - Place the surrounding atoms and lone pairs in appropriate positions around the central atom and predict any deviations from the ideal bond angles
 - Name the molecular shape
- For molecules with **more than one central atom**, find the electron-group arrangement and corresponding shape around each central atom (one central atom at a time)



10.3 Charge Distribution in Molecules Bond Polarity and Molecular Polarity


- Polar covalent bonds (due to unequal sharing of the bonding electrons) → bond dipoles
- Dipole moment (μ) a measure of the magnitude and direction of a dipole
 - $-\mu$ increases with increasing the partial charges of the atoms (**Q**) and the bond distance (**r**) $\rightarrow \mu = \mathbf{Q} \cdot \mathbf{r}$
 - The direction of μ is from plus to minus
 - SI units \rightarrow C \cdot m
 - -Other units \rightarrow debye (D) 1 D = 3.336×10⁻³⁰ C·m

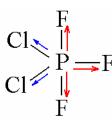
- Molecular dipole moment (associated with the molecule as a whole) – can be represented as a sum of the bond dipoles of all bonds
- Nonpolar molecules zero dipole moment
 - Homonuclear diatomic molecules $(H_2, O_2, F_2, ...)$
 - Polyatomic molecules where the bond dipoles cancel each other
 - CO_2 is nonpolar the bond dipoles of the C–O bonds cancel due to the linear shape



- **Polar** molecules nonzero dipole moment
 - Heteronuclear diatomic molecules (HF, CO, ...)
 - Polyatomic molecules where the bond dipoles do not cancel each other

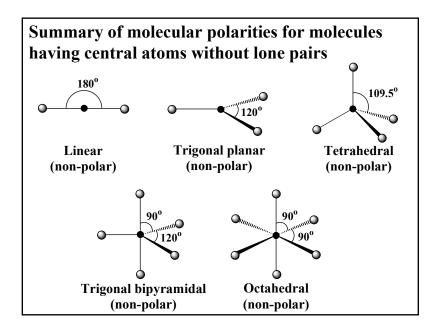
 H_2O is a polar molecule because the bond dipoles of the O-H bonds do not cancel due to the bent molecular shape ⇒The polarity of molecules depends on both the polarity of the bonds and the molecular geometry which must be known
 Example: The isomers 1,2-dichlorobenzene and

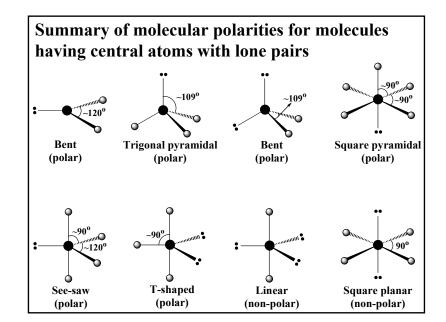
1,4-dichlorobenzene


- Highly symmetric molecules are normally nonpolar
 - $-AX_n$ molecules (n=2, 3, 4, 5, 6) where X are atoms of the same element
 - Molecules with symmetrically positioned lone pairs (AX_2E_3, AX_4E_2)
- Molecules with asymmetrically positioned lone pairs or different atoms attached to the central atom are normally polar
 - $-AX_2E$, AX_2E_2 , AX_3E , AX_3E_2 , AX_4E , AX_5E , ... $-CF_3H$, CF_2H_2 , $SO_2(bent)$, ...

Example: Is **PCl₂F₃** a polar molecule?

1. The Lewis structure is similar to PCl₅ (five atoms bonded to the P atom, no lone pairs)


\Rightarrow trigonal bipyramidal shape


2. The Cl atoms are larger and take two of the equatorial positions; the F atoms are smaller and take the two axial and one of the equatorial positions

The **P**–**F** dipoles are larger than the **P**–**Cl** dipoles (ΔEN is larger for **P** and **F**)

The molecule is **polar** – the bond dipoles don't cancel (asymmetric arrangement)

