Theories of Covalent Bonding

- Explain the observed shapes, polarities, magnetic and spectroscopic properties of molecules by using quantum mechanics - atomic and molecular orbitals
- The application of quantum mechanics to chemical bonding has led to two bonding theories

11.1 Valence Bond (VB) Theory

- A covalent bonds results from the overlap of valence atomic orbitals on neighboring atoms occupied by unpaired electrons and the formation of an electron pair which has highest probability to be between the nuclei

- Hybridization of atomic orbitals

- Without modifications the VB theory predicts bond angles of 90° at the central atom of polyatomic molecules such as $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$ and CH_{4} which is inconsistent with the experiment

Example: $\mathrm{H}_{\mathbf{2}} \mathrm{O}$

- The two electrons in the pair must have opposite spins - Pauli exclusion principle

- The overlapping orbitals are oriented in a way that provides maximum overlap between them
- \boldsymbol{s}-s orbital overlap is independent of orientation $\left(\mathrm{H}_{2}\right)$
-s and \boldsymbol{p} orbitals overlap along the axis of the \boldsymbol{p} orbital (HF)

- The valence orbitals of the central atom must be modified in order to reproduce the experimentally observed bond angles
- Hybridization - mathematical mixing of two or more valence orbitals on the same atom
- Result \rightarrow hybrid orbitals
- The hybrid orbitals have shapes and orientations different than the original orbitals being mixed
- The number of hybrid orbitals equals the number of original orbitals
- The hybrid orbitals have equal energies (average of the energies of the original orbitals)
- $\boldsymbol{s p}$ Hybridization - a combination of one \boldsymbol{s} and one \boldsymbol{p} orbital
- The resulting two $\boldsymbol{s} \boldsymbol{p}$ hybrid orbitals are identical and have linear orientation (used to describe the linear electron group arrangement, bond angles 180°)

- $\boldsymbol{s p} \boldsymbol{p}^{\mathbf{2}}$ Hybridization - a combination of one s and two p orbitals

- The resulting three $\boldsymbol{s} \boldsymbol{p}^{2}$ hybrid orbitals are identical and point toward the corners of an equilateral triangle (used to describe the trigonal planar e-group arrangement, bond angles $\mathbf{1 2 0}^{\boldsymbol{\circ}}$)

Trigonal planar

 arrangementExample: $\mathbf{B e C l}_{\mathbf{2}}$ (linear e-group arrangement)
The $\mathbf{3 p}$-orbitals of two $\mathbf{C l}$ atoms overlap with the two $\boldsymbol{s p}$-hybrids of $\mathbf{B e}$ and form two bonds with linear arrangement (bond angle of 180°); The two unhybridized $2 p$-orbitals of Be remain empty

Example:

$\mathbf{B F}_{3}$ (trigonal planar e-group arrangement)
The $\mathbf{2 p}$-orbitals of three \mathbf{F} atoms overlap with the three $\boldsymbol{s} \boldsymbol{p}^{2}$-hybrids of \mathbf{B} and form three bonds with trigonal planar arrangement (bond angle of 120°); The unhybridized $2 \boldsymbol{p}$-orbital of \mathbf{B} remains empty

- $\boldsymbol{s p} \boldsymbol{p}^{\mathbf{3}}$ Hybridization - a combination of one \boldsymbol{s} and three \boldsymbol{p} orbitals
- The resulting four $\boldsymbol{s} \boldsymbol{p}^{3}$ hybrid orbitals are identical and point toward the corners of a tetrahedron (used to describe the tetrahedral egroup arrangement, bond angles 109.5°)

- Hybrid orbitals can be used for bonding as well as for holding the lone pairs of the central atom
Examples:
$\mathbf{N H}_{3}$ and $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ (tetrahedral e-group arrangement)

Example:

$\mathbf{C H}_{4}$ (tetrahedral e-group arrangement)
The $\mathbf{1 s}$-orbitals of four \mathbf{H} atoms overlap with the four $\boldsymbol{s} \boldsymbol{p}^{3}$-hybrids of \mathbf{C} and form four bonds with tetrahedral arrangement (bond angles of 109.5°)

- Hybrids involving d-Orbitals
- d-orbitals can be involved in the hybridization at central atoms from the third or later periods of the table which form expanded octets
$-s p^{3} \boldsymbol{d}$ Hybridization - a combination of one s, three \boldsymbol{p} and one \boldsymbol{d} orbitals (used to describe the trigonal bipyramidal e-group arrangement)
$-s p^{3} d^{2}$ Hybridization - a combination of one s, three \boldsymbol{p} and two \boldsymbol{d} orbitals (used to describe the octahedral e^{-}group arrangement)

Examples:

$\mathbf{P C l}_{5}$ (trigonal bipyramidal e-group arrangement)
$\mathbf{S F}_{6}$ (octahedral e-group arrangement)

- Identification of the hybridization scheme
- Draw the Lewis structure and identify the e-group arrangement
- Use the following correspondence

	Linear	Trigonal Planar	Tetrahedral	Trigonal Bipyramidal	Octahedral
Atomic orbitals mixed	one s one p	one s two p	one s three p	one s three p one d	one s three p two d
Hybrid orbitals formed					
	two $s p$	three $s p^{2}$	four $s p^{3}$	five $s p^{3} d$	six $s p^{3} d^{2}$
Unhybridized orbitals remaining Orientation	two p	one p	none	four d	three d
	-				

Example:

What is the hybridization at the Cl atom in $\mathrm{ClF}_{3 \text { ? }}$

1. Lewis structure: $\mathbf{n}_{\text {tot }}=\mathbf{2 8}, \mathbf{n}_{\text {rem }}=\mathbf{2 2}, \mathbf{n}_{\text {need }}=\mathbf{2 0}$
$\mathbf{n}_{\text {need }}<\mathbf{n}_{\text {rem }} \Rightarrow 2$ extra e^{-}(place at the central atom)
2. $\mathbf{2}$ lone pairs $+\mathbf{3}$ bonded atoms $=\mathbf{5}$

