11.2 Types of Covalent Bonds

- The overlap (merging) of atomic orbitals can occur in two geometric configurations
 - End-to-end overlap along the internuclear axis (σ-bonding)
 - Side-to-side overlap on each side of the internuclear axis (π-bonding)
- Overlap between two *s* orbitals or between one *s* and one *p* orbital always leads to σ-bonds
- Overlap between two *p* orbitals leads to either σbonds or π-bonds
- > Overlap involving hybrids always leads to σ -bonds

Example: Ethane (C₂H₆)

The two C atoms are in sp^3 hybridization (tetrahedral)

- **□**For each **C**, three of the sp^3 hybrids overlap with the 1*s* orbitals of the **H** atoms to form six **σ-bonds**
- The remaining sp^3 hybrids of the C atoms overlap with each other along the internuclear axis to form a σ -bond
- The electron density increases in the overlapped regions between the nuclei along the internuclear axis

Example: Ethylene (C₂H₄)

- The two C atoms are in *sp*² hybridization (trig. planar)
 For each C, two of the *sp*² hybrids overlap with the 1*s* orbitals of the H atoms to form four σ-bonds
- The remaining sp^2 hybrids of the C atoms overlap with each other along the internuclear axis to form a σ-bond
- The unhybridized p orbitals of the C atoms overlap with each other side-to-side above and below the internuclear axis to form a π -bond

Example: Acetylene (C₂H₂)

- The two **C** atoms are in *sp* hybridization (linear)
- **□**For each C, one of the *sp* hybrids overlaps with the 1*s* orbitals of the **H** atoms to form two σ -bonds
- The remaining *sp* hybrids of the C atoms overlap with each other along the internuclear axis to form a σ-bond
- The unhybridized p orbitals of the C atoms overlap with each other side-to-side above and below the internuclear axis to form two π -bonds

Single bonds are always σ -bonds

- **> Double** bonds contain one σ -bond and one π -bond
- > Triple bonds contain one σ -bond and two π -bonds
 - π -bonds are typically weaker than σ -bonds since side-to-side overlap is less extensive than end-to-end overlap
 - ⇒Double (or triple) bonds are less than twice (or three times) stronger than single bonds

Example: CH₂O (trig. planar e-group arrangement)

- Two of the *sp*²-hybrids of C are used to form σ -**bonds** with the H atoms and the third one with the O
- □ The **O** atom is also in *sp*² hybridization; two of the *sp*² hybrids are used to hold the lone pairs of **O** and one to form a *σ*-bond with **C**

- Internal rotation in molecules
 - Allowed around single bonds (the overlap between the orbitals is preserved during rotation)
 - Not allowed around double bonds (rotation disturbs the parallel alignment of the *p*-orbitals and reduces their overlap, the π -bond breaks)
- ⇒Molecules with double bonds can have *cis-trans* isomers (Example: C₂H₂Cl₂)

11.3 Molecular Orbital (MO) Theory

- Limitations of the VSEPR model and the VB theory (based on localized bonding e-pairs) fail in describing:
 - Electron-deficient compounds have too few electrons (B₂H₆, Diborane must have at least 7 bonds (14 e⁻) to bond the 8 atoms, but has only 12 valence e⁻)
 - Radicals odd electron species (NO, 11 e⁻s)
 - Paramagnetism some molecules have paramagnetic properties without having unpaired e⁻s in their Lewis structures (O₂ is paramagnetic, but has no unpaired e⁻s in its Lewis structure)

- The molecular orbital theory resolves these problems by introducing **molecular orbitals**
 - Similar to the atomic orbitals, but spread throughout the whole molecule
 - Can be occupied by no more than 2 electrons with opposite spins – Pauli exclusion principle (explains the significance of e⁻ pairs)
 - Can be occupied by single electrons (provides explanations of odd-electron species and paramagnetic properties)
- The **MO**s are solutions of the Schrödinger equation for the molecule as a whole (only approximate solutions are available)

Formation of MOs in H₂

- As two H atoms (A and B) approach each other, their 1s orbitals (1s_A and 1s_B) overlap and interfere with each other
- The interference yields two MOs
 - Constructive interference (the amplitudes of the wavefunctions add together) \rightarrow **bonding MO** (σ_{1s})

$$\sigma_{1s} = 1s_A + 1s_B$$

- Destructive interference (the amplitudes of the wavefunctions subtract from each other) \rightarrow antibonding MO (σ_{1s} *)

$$\sigma_{1s}^{*} = 1s_A - 1s_B$$

- The bonding **MO** (molecular orbital) is **enhanced** between the nuclei
 - Increased electron density between the nuclei
 - $-\,e\mbox{-}s$ on σ_{1s} have lower energy than in the isolated Hs
- The antibonding **MO** has a **node** between the nuclei
 - Reduced electron density between the nuclei
 - $e^{-s} \text{ on } \sigma_{1s}^{*} \text{ have higher energy than in the isolated } Hs \\ \textit{Waves reinforce} \\ \textit{Waves cancel} \\ \textit$

- MOs formed by end-to-end overlap of AOs along the internuclear axis are labeled as σ-orbitals (σbonding)
- MOs formed by side-to-side overlap of AOs on each side of the internuclear axis are labeled as πorbitals (π-bonding)

