MOs for Period 2 Homonuclear Diatomic Molecules

- Only the valence **AO**s are considered **one** 2*s* orbital and **three** 2*p* orbitals for each atom
- When two atoms approach each other:
 - The 2*s* orbitals overlap to form two σ MOs, bonding (σ_{2s}) and antibonding (σ_{2s} *) (as in H₂)
 - The **2***p* orbitals directed along the internuclear axis overlap to form **two** σ **MO**s, bonding (σ_{2p}) and antibonding (σ_{2p} *)
 - The 2*p* orbitals perpendicular to the internuclear axis (2 from each atom) overlap to form four π MOs, two bonding (π_{2p}) and two antibonding (π_{2p}^*)

Example: Be₂

Total # of valence $e^{-s} \rightarrow 2+2=4$

 \Rightarrow place 4 e⁻s on the lowest energy MOs

Electron configuration $\rightarrow (\sigma_{2s})^2 (\sigma_{2s}^*)^2$

BO = $(2 - 2)/2 = 0 \rightarrow$ (the molecule is unstable)

Example: Ne₂

Total # of valence $e^{-s} \rightarrow 8+8=16$ \Rightarrow place 16 e^{-s} on the lowest energy MOs Electron configuration \rightarrow $(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2p})^2(\pi_{2p})^4(\pi_{2p}^*)^4(\sigma_{2p}^*)^2$ BO = $(8 - 8)/2 = 0 \rightarrow$ (the molecule is unstable)

MOs in Polyatomic Species

- The general approach is similar
- The **MO**s are build by more than two **AO**s
 - Linear Combinations of Atomic Orbitals (LCAO)
- The **MO**s are spread over the entire molecule
 - Delocalization of electrons
 - Explains the existence of electron deficient molecules (on average less than two electrons may be binding two atoms → multi-center bonds)

Example: B₂H₆

The **H**-bridges are based on a three-center **MO** holding $2e^{-s}$