1.5 Uncertainty of Measurements

- Represents the reliability of measurements
- Reported as: number \pm uncertainty $(4.88 \pm 0.05 \mathrm{~kg})$
- If not reported: assume $\pm \mathbf{1}$ in the last reported digit ($3.7 \mathrm{~cm} \rightarrow 3.7 \pm 0.1 \mathrm{~cm}$)
- Exact numbers - no uncertainty (5 tables, 10 apples, $1 \mathrm{~min}=60 \mathrm{~s}, 1 \mathrm{in}=2.54 \mathrm{~cm}$)
- Significant figures - digits of a number known with some degree of certainty
- All non-zero digits
- All zeros after the first non-zero digit
- Exception - trailing zeros in numbers without decimal point are not significant
- More significant figures \leftrightarrow less uncertainty Examples:
$1.32 \rightarrow 3$ sf
$0.005030 \rightarrow 4$ sf
$4500 \rightarrow 2$ sf

4500. $\rightarrow \mathbf{4} \mathbf{~ s f}$

• Examples of significant figures		
Decimal notation	Scientific notation	Number of sf
0.751	7.51×10^{-1}	3
0.00751	7.51×10^{-3}	3
0.07051	7.051×10^{-2}	4
0.750100	7.50100×10^{-1}	6
7.5010	7.5010	5
7501	7.501×10^{2}	4
7500	7.5×10^{3}	2^{+}
7500.	7.500×10^{3}	4

- Significant figures in calculations
- Rounding off (only at the end of a calculation)
- round up, if next digit is above 5
- round down, if next digit is below 5
- round to the nearest even number, if next digit is equal to 5 and it is the last nonzero digit of the number (if 5 is not the last nonzero digit, round up)
Examples: Round to 3 sf .

$$
\begin{array}{ll}
3.7643 \rightarrow 3.76 & \mathbf{3 . 7 6 5} \rightarrow \mathbf{3 . 7 6} \\
3.7683 \rightarrow 3.77 & 3.755 \rightarrow 3.76 \\
3.7653 \rightarrow 3.77 & \\
3.765 \rightarrow \mathbf{3 . 7 6} &
\end{array}
$$

- Addition and subtraction

- the number of decimal places in the result is the same as the smallest number of decimal places in the data

Examples:

$\mathbf{0 . 0 3 5 4}+\mathbf{1 2 . 1}=12.1 \leftarrow(\mathbf{1 2 . 1 3 5 4})$
$5.7 \times \mathbf{0 . 0 6 5 1}=\mathbf{0 . 3 7} \leftarrow \mathbf{(0 . 3 7 1 0 7)}$
5.7/0.0651 $=88 \leftarrow(87.55760369)$
$3.568 \mathrm{in} \times(2.54 \mathrm{~cm} / 1 \mathrm{in})=9.063 \mathrm{~cm}$

- Precision and accuracy

- Two aspects of uncertainty
- Precision - agreement among repeated measurements
- Random error - deviation from the average in a series of repeated measurements (some values higher, some values lower than the average)
small random error \leftrightarrow high precision
high precision \leftrightarrow more sf in the result
- Examples of precision and accuracy

- Accuracy - agreement of a measurement with the true or accepted value
- Systematic error - deviation of the average from the true value (present in the whole set of measurements - either all high or all low)
small systematic error \leftrightarrow high accuracy
- Instrument calibration - comparison with a known standard
- Essential for avoiding systematic error

Example:

- A car is moving at exactly $\mathbf{6 0} \mathbf{~ m i} / \mathbf{h r}$. Compare the precision and accuracy of the following two series of speed measurements using two different radars.
$\mathrm{A} \rightarrow \mathbf{6 1 . 5}, 58.3,62.7,63.5,57.1$ (average 60.6)
$B \rightarrow \mathbf{6 2 . 0}, \mathbf{6 2 . 5}, \mathbf{6 1 . 8}, \mathbf{6 2 . 2}, 62.1$ (average 62.1)
$\mathrm{A} \rightarrow$ more accurate, less precise
$B \rightarrow$ less accurate, more precise

