1.5 Uncertainty of Measurements

- Represents the reliability of measurements
- Reported as: number ± uncertainty (4.88 ± 0.05 kg)
- If not reported: assume ±1 in the last reported digit (3.7 cm → 3.7 ± 0.1 cm)
- Exact numbers no uncertainty (5 tables, 10 apples, 1 min = 60 s, 1 in = 2.54 cm)

- Significant figures digits of a number known with some degree of certainty
 - All non-zero digits
 - All zeros after the first non-zero digit
 - Exception trailing zeros in numbers without decimal point are not significant
- More significant figures ↔ less uncertainty
 Examples:
 1.32 → 3 sf

 $1.32 \rightarrow 3 \text{ sf}$ $0.005030 \rightarrow 4 \text{ sf}$ $4500 \rightarrow 2 \text{ sf}$ $4500. \rightarrow 4 \text{ sf}$

• Scientific notation – representation in the form $\rightarrow A \times 10^{a}$

 $-A \rightarrow$ a decimal number between 1 and 10

- $-a \rightarrow$ a positive or negative integer
- Examples:
 - $0.00134 = 1.34 \times 10^{-3}$

 $134 = 1.34 \times 10^2$

- all digits in A are significant

• Examples of significant figures

Decimal notation	Scientific notation	Number of st
0.751	7.51×10^{-1}	3
0.007 51	7.51×10^{-3}	3
0.070 51	7.051×10^{-2}	4
0.750 100	$7.501\ 00\ imes\ 10^{-1}$	6
7.5010	7.5010	5
7501	7.501×10^{2}	4
7500	7.5×10^{3}	2*
7500.	7.500×10^{3}	4

 Significant figures in calculations 		
– Rounding off (only at the end of a calculation)		
 round up, if next digit is above 5 		
 round down, if next digit is below 5 		
• round to the nearest even number, if next digit is equal to 5 and it is the last nonzero digit of the number (if 5 is not the last nonzero digit, round up)		
Examples: Round to 3 sf.		
$3.7643 \rightarrow 3.76$	$3.765 \rightarrow 3.76$	
$3.7683 \rightarrow 3.77$	$3.755 \rightarrow 3.76$	
$3.7653 \rightarrow 3.77$		
$3.765 \rightarrow 3.76$		

- Addition and subtraction
 - the number of decimal places in the result is the same as the smallest number of decimal places in the data

- Precision and accuracy
 - Two aspects of uncertainty
- **Precision** agreement among repeated measurements
 - Random error deviation from the average in a series of repeated measurements (some values higher, some values lower than the average)

small random error \leftrightarrow high precision

high precision \leftrightarrow more sf in the result

- Accuracy agreement of a measurement with the true or accepted value
 - Systematic error deviation of the average from the true value (present in the whole set of measurements – either all high or all low)

small systematic error \leftrightarrow high accuracy

• **Instrument calibration** – comparison with a known standard

- Essential for avoiding systematic error

Example:

- A car is moving at exactly **60 mi/hr**. Compare the precision and accuracy of the following two series of speed measurements using two different radars.
 - $A \rightarrow 61.5, 58.3, 62.7, 63.5, 57.1$ (average 60.6)
 - B → 62.0, 62.5, 61.8, 62.2, 62.1 (average 62.1)
 - $A \rightarrow$ more accurate, less precise
 - $B \rightarrow less$ accurate, more precise