

– Mass of the electron \rightarrow

 $(-1.602 \times 10^{-19} \text{ C}) \times (-5.686 \times 10^{-12} \text{ kg/C}) = 9.109 \times 10^{-31} \text{ kg}$

• Discovery of the nucleus

- Matter is electrically neutral \rightarrow the negative electrons must be balanced by positive particles
- -J.J. Thomson's "plum pudding" model (electrons embedded in a diffuse sphere of positive charge)
- Radioactivity (α , β , γ rays)
 - $\Box \alpha \text{-Particles} \text{heavy} \text{ and positive}$
 - $\Box\beta$ -Particles light and negative
 - $\Box \gamma$ -Rays electromagnetic radiation

2.5 The Atomic Theory Today

lative	Absolute (C)*	Relative (amu) ⁺	Abaaluta (a)
	(C)	Relative (anu)	Absolute (g)
1+	$+1.60218 \times 10^{-19}$	1.00727	1.67262×10^{-24}
0	0	1.00866	1.67493×10^{-24}
1-	-1.60218×10^{-19}	0.00054858	9.10939×10 ⁻²⁸
	1+ 0 1- unit of cha	$\begin{array}{rrrr} 1+&+1.60218\times10^{-19}\\ 0&0\\ 1-&-1.60218\times10^{-19}\\ \hline \\ \text{unit of charge.} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

- e^- negative charge, same absolute charge as the p^+
- Atoms are neutral \Rightarrow #e⁻ = #p⁺

- Atomic number (Z) number of protons in the atomic nucleus
 - All atoms of a given element have the same Z

$$\mathbf{Z} = \#\mathbf{p}^+ = \#\mathbf{e}$$

• Mass number (A) – total number of protons and neutrons

$$\mathbf{A} = \mathbf{\#p^{+}} + \mathbf{\#n^{0}}$$

- Atomic symbols
 - -H (hydrogen), C (carbon), O (oxygen), Ar (argon), Cl (chlorine)
 - -Fe (iron, ferrum), Ag (silver, argentum), Sn (tin, stannum)

Isotopes and atomic masses

- The $\#\mathbf{p}^+$ in the nucleus of a given element is always the same, but the $#n^0$ can vary (Z is the same; A can vary)

• Isotopes

- Atoms with the same Z, but different A

 (p^{+})

- Belong to the same element, but have different atomic mass Mass
- Isotopic symbols

Atomic symbol

- Atomic mass unit (amu or D) 1/12 of the mass of a carbon-12 atom
 - Isotopic mass of ${}^{12}C \rightarrow 12$ amu (exactly)
 - Isotopic mass of ${}^{1}\text{H} \rightarrow 1.008$ amu
 - Isotopic mass of ${}^{29}\text{Si} \rightarrow 28.976$ amu
- Elements occur in nature as mixtures of isotopes with certain abundances
- Atomic mass of an element average of the masses of its naturally occurring isotopes (atomic masses are listed in the periodic table)

Problem:

Calculate the atomic mass of Cu, given that it naturally occurs as 69.17% ⁶³Cu (62.94 amu) and 30.83% ⁶⁵Cu (64.93 amu).

Use a weighted average:

Atomic mass of Cu = = 0.6917 × 62.94 *amu* + 0.3083 × 64.93 *amu* = 63.55 *amu*

• Reassessment of Dalton's atomic theory:

- 1. Matter consist of atoms that are *divisible and composed of protons, neutrons and electrons.*
- 2. All atoms of an element have the same *number of protons in their nucleus* which is different from the atoms of other elements.
- 3. Compounds result from chemical combinations of different elements in specific atomic ratios
- 4. Atoms don't change their identities in chemical reactions. *Nuclear reactions can convert atoms of one element to another*.