

Conversion between moles and entities [1 mol entities/6.022×10²³ entities] Example:

1) How many molecules of water are present in 2.7 mol of water?

2) How many atoms of hydrogen are present in 2.7 mol of water?

2.7 mol H₂O
$$\left(\frac{6.022 \times 10^{23} \text{ molec. H}_2\text{O}}{1 \text{ mol H}_2\text{O}}\right) = 1.6 \times 10^{24} \text{ molec. H}_2\text{O}$$

1.6×10²⁴ molec. H₂O $\left(\frac{2 \text{ atoms H}}{1 \text{ molec. H}_2\text{O}}\right) = 3.3 \times 10^{24} \text{ atoms H}$

Stoichiometry

– Studies the quantitative aspects of chemical reactions

3.1 The Mole

• Unit for amount of substance in terms of the number of entities (atoms, molecules, ...) in it.

1 mol of entities \rightarrow # of atoms in 12 g of $^{12}\mathrm{C}$

1 atom of ${}^{12}C \rightarrow 1.99265 \times 10^{-23} \text{ g}{}^{12}C$ (mass spectrometry)

 $12 \text{ g}^{12}\text{C} \times [1 \text{ atom}/1.99265 \times 10^{-23} \text{ g}^{12}\text{C}] = 6.022 \times 10^{23} \text{ atoms}$

\Rightarrow 1 mol of entities \rightarrow 6.022×10²³ entities

• Avogadro's number (N_A) – number of entities per 1 mol $\rightarrow N_A = 6.022 \times 10^{23}$ /mol

- The atomic mass (in *amu*) of an element is numerically equal to the mass (in *g*) of 1 mol of the element
 - $-{}^{12}C \rightarrow 12 \text{ amu} \quad 1 \text{ mol } {}^{12}C \rightarrow 12 \text{ g} \text{ (definitions)}$
 - $-C \rightarrow 12.01 \text{ amu} \quad 1 \text{ mol } C \rightarrow 12.01 \text{ g}$
 - $-H \rightarrow 1.008 \text{ amu} \quad 1 \text{ mol } H \rightarrow 1.008 \text{ g}$
 - $-O \rightarrow 16.00 \text{ amu} \quad 1 \text{ mol } O \rightarrow 16.00 \text{ g}$
- The molecular (formula) mass (in *amu*) of a compound is numerically equal to the mass (in *g*) of 1 mol of the compound

 $-CO_2 \rightarrow 44.01 \text{ amu}$ 1 mol $CO_2 \rightarrow 44.01 \text{ g}$

 \Rightarrow 1 mol of a substance has a fixed mass (can be used to measure moles of substances by weighing them)

Molar Mass (M)

- Mass of a substance per 1 mol of its entities – element \rightarrow atoms (or molecules for H₂, O₂, P₄, ...)
 - molecular compound \rightarrow molecules
 - $-ionic \text{ compound} \rightarrow \text{formula units}$
- Units of $M \rightarrow g/mol$

•
$$M = m_{particle} \times N_A$$

Example:

What is the molar mass of ¹H, if the mass of 1 atom ¹H is 1.673×10^{-24} g?

 $M = 1.673 \times 10^{-24} \text{g} \times 6.022 \times 10^{23} / \text{mol} = 1.007 \text{ g/mol}$

M is numerically equal to the atomic, molecular, or formula mass of the substance

For elements, *M* = atomic mass (from per. table)
For molecular compounds and molecular elements, *M* = molecular mass
For ionic compounds, *M* = formula mass
⇒ For compounds and molecular elements, *M* equals the sum of the molar (atomic) masses of the elements in the formula

Example:

Calculate the molar masses of O_2 and Li_2O . $M(O_2) = 2 \times 16.00 = 32.00 \text{ g/mol}$ $M(Li_2O) = 2 \times 6.941 + 1 \times 16.00 = 29.88 \text{ g/mol}$

Conversion between moles (*n*) and masses (*m*) of elements

Example:

What is the mass of 1.221 mol Kr?

 $m = 1.221 \text{ mol} \times 83.80 \text{ g/mol} = 102.3 \text{ g}$

Example:

How many moles of atoms are present in 1.23 g of Kr?

1.23 g Kr ×
$$\left(\frac{1 \text{ mol Kr}}{83.80 \text{ g Kr}}\right) = 1.47 \times 10^{-2} \text{ mol Kr}$$

• Conversion between masses of compounds and masses of their elements using chemical formulas (*The subscripts in formulas refer to individual atoms as well as to moles of atoms*) **Example:** What is the mass of H in **5.00 g** CH₄? CH₄ \rightarrow *M* = 1×12.01 + 4×1.008 = 16.04 g/mol H \rightarrow *M* = 1.008 g/mol 5.00 g CH₄ $\times \left(\frac{1 \text{ mol CH}_4}{16.04 \text{ g CH}_4}\right) \times \left(\frac{4 \text{ mol H}}{1 \text{ mol CH}_4}\right) \times \left(\frac{1.008 \text{ g H}}{1 \text{ mol H}}\right) = 1.26 \text{ g H}$ • Conversion between masses and number of entities of elements and compounds **Example:** Calculate the number CO₂ molecules and oxygen atoms in **15.8** g of CO₂. $M(CO_2) = 12.01 + 2 \times 16.00 = 44.01$ g/mol $15.8 \text{ g CO}_2 \left(\frac{1 \text{ mol } \text{CO}_2}{44.01 \text{ g } \text{CO}_2}\right) \left(\frac{6.022 \times 10^{23} \text{ molec. CO}_2}{1 \text{ mol } \text{CO}_2}\right)$ $= 2.16 \times 10^{23} \text{ molec. CO}_2$ $2.16 \times 10^{23} \text{ molec. CO}_2 \left(\frac{2 \text{ atoms O}}{1 \text{ molec. CO}_2}\right) = 4.32 \times 10^{23} \text{ atoms O}$

Mass Percentage Composition

• Percentage by mass of each element in a compound

 $Mass\% = [m_{element}/m_{compound}] \times 100\%$

• Calculation of Mass% from chemical formulas

- Consider 1 mol of a compound

 $\mathbf{m}_{comp} = M$ of comp

 $\mathbf{m}_{elem} = (\# \text{ moles of elem in 1 mol of comp}) \times (M \text{ of elem})$ Note: The # of moles of the element in 1 mol of the compound equals the # of atoms of the element in the formula of the compound

Example:

Calculate the mass percentage of C in nicotine, if analysis shows that 5.00 g of nicotine contain 3.70 g C, 0.44 g H and 0.86 g N.

Mass% C =
$$\left(\frac{3.70 \text{ g C}}{5.00 \text{ g nicotine}}\right) \times 100\% = 74.0\%$$

 $\frac{\text{Mass\% of element}}{\left[\frac{(\# \text{ atoms of element in formula})(M \text{ of element})}{(M \text{ of compound})}\right] \times 100\%$ Example: Calculate the Mass% of O in CO₂. CO₂ \rightarrow M = 1×12.01 + 2×16.00 = 44.01 g/mol O \rightarrow M = 16.00 g/mol Mass% O = $\left(\frac{2 \times 16.00 \text{ g/mol}}{44.01 \text{ g/mol}}\right) \times 100\% = 72.71\%$