

- Conversion between moles and entities
[1 mol entities/ 6.022×10^{23} entities]
Example:

1) How many molecules of water are present in 2.7 mol of water?
2) How many atoms of hydrogen are present in 2.7 mol of water?
$2.7 \mathrm{~mol} \mathrm{H} \mathbf{2}\left(\frac{6.022 \times 10^{23} \text { molec. } \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}}\right)=1.6 \times 10^{24} \mathrm{molec} . \mathrm{H}_{2} \mathrm{O}$
1.6×10^{24} molec. $\mathrm{H}_{2} \mathrm{O}\left(\frac{2 \text { atoms } \mathrm{H}}{1 \text { molec. } \mathrm{H}_{2} \mathrm{O}}\right)=3.3 \times 10^{24}$ atoms H

Stoichiometry

- Studies the quantitative aspects of chemical reactions

3.1 The Mole

- Unit for amount of substance in terms of the number of entities (atoms, molecules, ...) in it.
1 mol of entities \rightarrow \# of atoms in 12 g of ${ }^{\mathbf{1 2}} \mathrm{C}$
1 atom of ${ }^{12} \mathrm{C} \rightarrow 1.99265 \times 10^{-23} \mathrm{~g}^{12} \mathrm{C}$ (mass spectrometry)
$12 \mathrm{~g}^{12} \mathrm{C} \times\left[1 \mathrm{atom} / 1.99265 \times 10^{-23} \mathrm{~g}^{12} \mathrm{C}\right]=6.022 \times 10^{23}$ atoms
$\Rightarrow \mathbf{1}$ mol of entities $\boldsymbol{\rightarrow} \mathbf{6 . 0 2 2} \times \mathbf{1 0}^{\mathbf{2 3}}$ entities
- Avogadro's number $\left(N_{A}\right)$ - number of entities per $1 \mathrm{~mol} \rightarrow \boldsymbol{N}_{A}=\mathbf{6 . 0 2 2} \times \mathbf{1 0}^{\mathbf{2 3}} / \mathbf{m o l}$
- The atomic mass (in $a m u$) of an element is numerically equal to the mass (in g) of 1 mol of the element
$-{ }^{12} \mathrm{C} \rightarrow 12 \mathrm{amu} \quad 1 \mathrm{~mol}{ }^{12} \mathrm{C} \rightarrow 12 \mathrm{~g}$ (definitions)
$-\mathrm{C} \rightarrow 12.01 \mathrm{amu} \quad 1 \mathrm{~mol} \mathrm{C} \rightarrow 12.01 \mathrm{~g}$
$-\mathrm{H} \rightarrow 1.008 \mathrm{amu} \quad 1 \mathrm{~mol} \mathrm{H} \rightarrow 1.008 \mathrm{~g}$
$-\mathrm{O} \rightarrow 16.00 \mathrm{amu} \quad 1 \mathrm{~mol} \mathrm{O} \rightarrow 16.00 \mathrm{~g}$
- The molecular (formula) mass (in $a m u$) of a compound is numerically equal to the mass (in g) of 1 mol of the compound

$$
-\mathrm{CO}_{2} \rightarrow 44.01 \mathrm{amu} \quad 1 \mathrm{~mol} \mathrm{CO}_{2} \rightarrow 44.01 \mathrm{~g}
$$

$\Rightarrow 1 \mathrm{~mol}$ of a substance has a fixed mass (can be used to measure moles of substances by weighing them)

Molar Mass (M)

- Mass of a substance per 1 mol of its entities
- element \rightarrow atoms (or molecules for $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{P}_{4}, \ldots$)
- molecular compound \rightarrow molecules
- ionic compound \rightarrow formula units
- Units of $\boldsymbol{M} \rightarrow \mathbf{g} / \mathbf{m o l}$
- $M=m_{\text {particle }} \times N_{A}$

Example:
What is the molar mass of ${ }^{1} \mathrm{H}$, if the mass of 1 atom ${ }^{1} \mathrm{H}$ is $1.673 \times 10^{-24} \mathrm{~g}$?
$M=1.673 \times 10^{-24} \mathrm{~g} \times 6.022 \times 10^{23} / \mathrm{mol}=1.007 \mathrm{~g} / \mathrm{mol}$

- \boldsymbol{M} can be used as a conversion factor
- Conversion between moles (\boldsymbol{n}) and mass (\boldsymbol{m})

$$
m=n \times M \quad \leftrightarrow \quad n=m / M
$$

- \boldsymbol{M} is numerically equal to the atomic, molecular, or formula mass of the substance
- For elements, $\boldsymbol{M}=$ atomic mass (from per. table)
- For molecular compounds and molecular elements, $\boldsymbol{M}=$ molecular mass
- For ionic compounds, $\boldsymbol{M}=$ formula mass
\Rightarrow For compounds and molecular elements, \boldsymbol{M} equals the sum of the molar (atomic) masses of the elements in the formula

Example:

Calculate the molar masses of O_{2} and $\mathrm{Li}_{2} \mathrm{O}$. $M\left(\mathrm{O}_{2}\right)=\mathbf{2} \times \mathbf{1 6 . 0 0}=\mathbf{3 2 . 0 0} \mathrm{g} / \mathrm{mol}$
$M\left(\mathrm{Li}_{2} \mathrm{O}\right)=2 \times 6.941+1 \times 16.00=29.88 \mathrm{~g} / \mathrm{mol}$

- Conversion between moles (\boldsymbol{n}) and masses (m) of elements

Example:

What is the mass of 1.221 mol Kr ?
$m=1.221 \mathrm{~mol} \times \mathbf{8 3 . 8 0} \mathrm{g} / \mathrm{mol}=\mathbf{1 0 2 . 3} \mathrm{g}$

Example:

How many moles of atoms are present in 1.23 g of Kr ?
$1.23 \mathrm{~g} \mathrm{Kr} \times\left(\frac{1 \mathrm{~mol} \mathrm{Kr}}{83.80 \mathrm{~g} \mathrm{Kr}}\right)=1.47 \times 10^{-2} \mathrm{~mol} \mathrm{Kr}$

- Conversion between moles (\boldsymbol{n}) and masses (m) of compounds (same as for elements)

Example:

Calculate the number of moles of urea, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$, in $2.3 \times 10^{5} \mathrm{~kg}$ of this compound.
$M=\mathbf{2} \times \mathbf{1 4 . 0 0}+\mathbf{4} \times \mathbf{1 . 0 0 8}+\mathbf{1} \times \mathbf{1 2 . 0 1}+\mathbf{1} \times \mathbf{1 6 . 0 0}=\mathbf{6 0 . 0 4} \mathrm{g} / \mathrm{mol}$ $2.3 \times 10^{5} \mathrm{~kg}$ urea $\times\left(\frac{10^{3} \mathrm{~g} \text { urea }}{1 \mathrm{~kg} \text { urea }}\right) \times\left(\frac{1 \mathrm{~mol} \text { urea }}{60.04 \mathrm{~g} \text { urea }}\right)$
$=3.8 \times 10^{6} \mathrm{~mol}$ urea

- Conversion between masses of compounds and masses of their elements using chemical formulas (The subscripts in formulas refer to individual atoms as well as to moles of atoms)
Example: What is the mass of H in $\mathbf{5 . 0 0} \mathbf{g ~ C H}_{4}$? $\mathrm{CH}_{4} \rightarrow M=1 \times 12.01+\mathbf{4} \times \mathbf{1 . 0 0 8}=\mathbf{1 6 . 0 4} \mathrm{g} / \mathrm{mol}$ $\mathrm{H} \rightarrow \mathrm{M}=1.008 \mathrm{~g} / \mathrm{mol}$
$5.00 \mathrm{~g} \mathrm{CH}_{4} \times\left(\frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.04 \mathrm{~g} \mathrm{CH}_{4}}\right) \times\left(\frac{\left.4 \mathrm{~mol} \mathrm{H}^{1 \mathrm{~mol} \mathrm{CH}_{4}}\right) \times . ~}{\text {. }}\right.$ $\times\left(\frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}\right)=1.26 \mathrm{~g} \mathrm{H}$
- Conversion between masses and number of entities of elements and compounds

Example:

Calculate the number CO_{2} molecules and oxygen atoms in $\mathbf{1 5 . 8} \mathbf{g}$ of CO_{2}.
$M\left(\mathrm{CO}_{2}\right)=12.01+\mathbf{2} \times 16.00=44.01 \mathrm{~g} / \mathrm{mol}$
$15.8 \mathrm{~g} \mathrm{CO}_{2}\left(\frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}}\right)\left(\frac{6.022 \times 10^{23} \mathrm{molec} . \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}}\right)$
$=2.16 \times 10^{23}$ molec. CO_{2}
2.16×10^{23} molec. $\mathrm{CO}_{2}\left(\frac{2 \text { atoms } \mathrm{O}}{1 \text { molec. } \mathrm{CO}_{2}}\right)=4.32 \times 10^{23}$ atomsO

Mass Percentage Composition

- Percentage by mass of each element in a compound

Mass\% $=\left[\mathrm{m}_{\text {element }} / \mathrm{m}_{\text {compound }}\right] \times \mathbf{1 0 0 \%}$

- Calculation of Mass\% from chemical formulas
- Consider 1 mol of a compound
$\mathbf{m}_{\text {comp }}=\boldsymbol{M}$ of comp
$\mathbf{m}_{\text {elem }}=(\#$ moles of elem in 1 mol of comp $) \times(\boldsymbol{M}$ of elem $)$
Note: The \# of moles of the element in 1 mol of the compound equals the \# of atoms of the element in the formula of the compound
$\underline{\text { Mass\% of element }}=$
$\left[\frac{(\text { \# atoms of element in formula) })(M \text { of element })}{(M \text { of compound })}\right] \times 100 \%$

Example:

Calculate the Mass\% of O in CO_{2}.

$$
\mathrm{CO}_{2} \rightarrow M=1 \times 12.01+2 \times 16.00=44.01 \mathrm{~g} / \mathrm{mol}
$$

$$
O \xrightarrow{2} M=16.00 \mathrm{~g} / \mathrm{mol}
$$

Mass $\% \mathrm{O}=\left(\frac{2 \times 16.00 \mathrm{~g} / \mathrm{mol}}{44.01 \mathrm{~g} / \mathrm{mol}}\right) \times 100 \%=72.71 \%$

- Calculation of Mass\% from chemical analysis

Example:

Calculate the mass percentage of C in nicotine, if analysis shows that 5.00 g of nicotine contain $3.70 \mathrm{~g} \mathrm{C}, 0.44 \mathrm{~g} \mathrm{H}$ and 0.86 g N .

Mass $\% \mathrm{C}=\left(\frac{3.70 \mathrm{~g} \mathrm{C}}{5.00 \mathrm{~g} \text { nicotine }}\right) \times 100 \%=74.0 \%$

