Liquids, Solids and Phase Changes

12.1 Physical States and Phase Changes

- Physical states gas, liquid and solid
 - Phases physically distinct, homogeneous parts of a sample of matter (can be gaseous, liquid or solid)

- Condensed phases - liquid or solid

- A sample can contain more than one liquid phases (immiscible) or more than one solid phases
- Phase changes conversions between the different phases of a substance

- Intramolecular (bonding) forces exist within each molecule or polyatomic ion (influence the chemical properties)
- Intermolecular (interparticle) forces exist between the particles (molecules or ions) of a substance (influence the physical properties)

Kinetic-Molecular View of the Three States

• The physical state of a substance is governed by the relative magnitudes of the potential energy of **intermolecular attraction** and the kinetic energy of **molecular motion**

- Gas – the particles are far apart; the energy of
motion dominates the energy of attraction

- Liquid the particles are close together; the energies of attraction and motion are comparable
- Solid the particles are close together; the energy of attraction dominates the energy of motion

 Table 12.1
 A Macroscopic Comparison of Gases, Liquids, and Solids

 State
 Ability

 State
 Shape and Volume

Gas	Conforms to shape and volume of container	High	High
Liquid	Conforms to shape of container; volume limited by surface	Very low	Moderate
Solid	Maintains its own shape and volume	Almost none	Almost none

Enthalpies (Heats) of Phase Changes

- Phase changes are accompanied by energy and enthalpy changes
 - Vaporization, melting and sublimation are always endothermic – energy must be absorbed to overcome the intermolecular forces
 - Condensation, freezing and deposition are always exothermic – energy is released as the molecules get closer and attract each other
- Heat of vaporization (ΔH_{vap}) enthalpy change for the conversion of 1 mol of a substance from liquid to gas

Types of Phase Changes

- Phase changes are caused by changing conditions such as temperature and pressure

 At high *T*, the *E_k* of molecular motion increases
 - At high P, the molecules get closer together and the E_p of intermolecular attraction increases
- Vaporization conversion from liquid to gas
- Condensation conversion from gas to liquid
- Melting (fusion) conversion from solid to liquid
- Freezing conversion from liquid to solid
- Sublimation conversion from solid to gas
- **Deposition** conversion from gas to solid
- Heat of fusion (ΔH_{fus}) enthalpy change for the conversion of 1 mol of a substance from solid to liquid
- Heat of sublimation (∠H_{sub}) enthalpy change for the conversion of 1 mol of a substance from solid to gas
- The heats of the reverse processes (condensation, freezing and deposition) have the same magnitudes but opposite signs (For example: $\Delta H_{cond} = -\Delta H_{vap}$)
- For most substances: $0 < \Delta H_{fus} < \Delta H_{vap} < \Delta H_{sub}$

12.2 Quantitative Aspects of Phase Changes

- Heating-cooling curves show the variation of the temperature of a sample as it is heated or cooled at a constant rate
- Regions in the heating-cooling curves
 - Sloped regions correspond to temperature changes in the pure solid, liquid or gas phases (slope depends on the heat capacity of each phase; E_k of molecular motion changes)
 - Flat regions correspond to phase changes (temperature remains constant; E_p of intermolecular attraction changes)

- Vapor pressure (P_{ν}) the pressure exerted by the vapors over a liquid at equilibrium
 - $-P_{\nu}$ depends only on the nature of the liquid and *T* (if P_{ν} is disturbed by compression or expansion, the equilibrium shifts to restore the original P_{ν})
 - In the presence of other gases over the liquid, P_{ν} is the **partial pressure** of the vapors
- *P_v* increases with decreasing the strength of the intermolecular forces (*IF*)
 - In order to vaporize, a molecule must escape the forces of attraction, *IF*, between the molecules in the liquid

- If two equations are written for two different T_s , T_1 and T_2 , at which the $P_v s$ are P_1 and P_2 and the 1^{st} equation is subtracted from the 2^{nd} , one gets: $\ln \frac{P_2}{P_1} = \frac{-\Delta H_{vap}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$
- **Boiling** in an open container a liquid starts boiling (forming bubbles inside) when P_v reaches the external pressure, P_{atm} – **Boiling point** (T_b) – the T at which $P_v = P_{atm}$
 - $\Rightarrow T_b \text{ increases with increasing } P_{atm} \text{ since at higher } P_{atm}, \text{ higher } P_v \text{ must be achieved for boiling to occur, so higher } T \text{ is needed}$
 - Normal boiling point the T_b at $P_{atm} = 760$ torr

Phase Diagrams

- Specify the stability of the various phases at different *T* and *P*
- Solid lines phase boundaries
- Between the lines one stable phase
- > On the lines **two** phases in equilibrium
- At the triple point three phases in equilibrium
- Critical point the end of the liquid/gas phase boundary

12.3 Types of Intermolecular Forces (*IF***)**

- *IF*s are based on electrostatic interactions between opposite charges, but they are much weaker than chemical bonds for two reasons:
 Smaller el. charges are involved
 The distances between the el. charges are longer
 Covalent radius ½ the distance between two identical bonded atoms
 van der Waals radius ½ the distance between two adjacent, identical (nonbonded) atoms from different
 - adjacent, identical (nonbonded) atoms from different molecules \rightarrow The van der Waals radius of an atom is always longer than its covalent radius
 - -IFs are also called van der Waals forces
 - -Stronger IFs lead to higher T_b and T_m values

- **Ion-Dipole** forces *IF*s between an ion and a nearby polar molecule (ionic compounds like NaCl dissolved in polar solvents like H₂O)
- **Dipole-Dipole** forces *IF*s between two polar molecules (δ + of one molecule attracts δ of the other)
 - Increase with increasing the dipole moment

Example:

CH₃CH₂CH₃ and CH₃CN have almost the same molecular weight and size. Since CH₃CN is much more polar, its dipole-dipole forces are much stronger and its boiling and melting points, T_b and T_m , are much higher.

- Hydrogen Bonding *IF* between molecules containing H-atoms connected to highly electronegative small atoms with lone pairs like F, O and N
 - Due to the very high polarity of the H-F, H-O and H-N bonds (the δ + of H is attracted to the δ of the lone pair of F, O or N)

• Charge-Induced Dipole forces

- **Induced dipole** a dipole induced in a particle through a distortion of its electron cloud by an electric field such as a nearby charge or another dipole
- Polarizability the ease with which the electron cloud of a particle can be distorted (increases with increasing the size of the electron cloud and therefore with the molar mass of the particle)
- ➤Ion-Induced Dipole forces *IF*s between an ion and a dipole it induces in a nearby particle
- Dipole-Induced Dipole forces *IF*s between a dipole and a dipole it induces in a nearby particle

• Dispersion (London) forces

- **Instantaneous dipole** a dipole that results from an instantaneous fluctuation of the electron cloud in a particle
- The instantaneous dipole can induce a dipole in a nearby particle and create an **induced dipole** in it
- Dispersion (London) forces *IF*s between an instantaneous dipole and an induced dipole in a nearby particle
- Dispersion forces *exist between any particles*, but they are *the only type of IFs for non-polar molecules and atoms of noble gases*

Examples: CH_4 , Cl_2 , CO_2 , Ar, Kr, Xe ... are all non-polar \Rightarrow only dispersion forces are present

- The strength of the dispersion forces depends on:
 - The **polarizability** (size, molar mass) of the particles

↑size, molar mass \Rightarrow ↑dispersion forces

• The **shape** of the particles – dispersion forces between rod-shaped molecules are stronger compared to spherical molecules of the same size (rod-shapes provide more points of contact)

Example:

The boiling points of the noble gases increase down the group as the molar mass increases

```
Noble gases \rightarrow He Ne Ar Kr Xe

T_b (°C) \rightarrow -269 -246 -186 -153 -108

Molar mass \uparrow \Rightarrow Dispersion forces \uparrow \Rightarrow T_b \uparrow
```


	Force	Model	Basis of Attraction	Energy (kJ/mol)	Example
	Bonding				
Intramolecular	Ionic		Cation-anion	400-4000	NaCl
	Covalent	•••	Nuclei-shared e ⁻ pair	150-1100	Н—Н
	Metallic		Cations-delocalized electrons	75–1000	Fe

• Comparing the different types of <i>IF</i> s				
 The most common <i>IF</i>s in substances are H- bonding, dipole-dipole and dispersion forces 				
 Dispersion forces are typically more important than dipole-dipole forces, and if they have opposite trends, the dispersion forces dominate 				
Example:				
H-halides \rightarrow	HCl	HBr	HI	
$T_b(\mathbf{K}) \rightarrow$	188	206	237	
Dipole moment $\downarrow \Rightarrow$ Dipole-dipole forces \downarrow				
-		•	, v	
ſ	Molar mas	ss ↑ ⇒ Dispe	rsion forces T	

 Comparing the different types of <i>IF</i>s H-bonding is typically much stronger than dipole-dipole and dispersion forces for particles of similar sizes 			
Example:			
Hydrogen halides \rightarrow HF HCl HBr HI			
$T_b(\mathrm{K}) \rightarrow$ 293 188 206 237			
Molar mass $\uparrow \Rightarrow$ Dispersion forces \uparrow			
HF breaks the trend and has an anomalously high T_b due to the much stronger H-bonding forces which are not present in HCl, HBr and HI			

12.3 Properties of Liquids

- Surface tension (σ) the energy needed to increase the surface area of a liquid by a unit amount (units \rightarrow J/m²)
- > Surface molecules experience a net inward force
- To create more surface (surface molecules), energy is needed to work against this inward force
- ⇒Liquids tend to assume shapes that **minimize the surface area** (spherical drops)

> σ↑ with increasing the strength of the *IF*s

- Capillary action the rising of liquids in narrow tubes (capillaries) against the force of gravity (results from the competition of two types of forces)
 - Adhesive forces between the molecules of the liquid and the walls of the capillary
 - ➤Cohesive forces between the molecules within the liquid (*IF*s)

Examples: The H_2O level rises inside a narrow glass tube \rightarrow the adhesive forces are stronger; The **Hg** level drops inside a narrow glass tube \rightarrow the cohesive forces are stronger

- Viscosity (η) the resistance to flow
 - $-\eta^{\uparrow}$ with increasing the strength of the *IF*s
 - $-\eta \downarrow$ with increasing the temperature (the kinetic energy of the molecules increases relative to the *IF*s of attraction between them)

Examples:

CH₃CH₂OH is more viscous than CH₃CH₂CH₃ H-bonding ▲ London forces ▲

Oil and honey flow easier at higher T

12.5 The Unique Properties of Water

- Solvent properties of water
 - Dissolves ionic compounds through ion-dipole forces (salts, minerals, acids, bases, ...)
 - Dissolves molecular compounds
 - Through H-bonding and dipole-dipole forces (sugars, alcohols, proteins, ...)
 - Through Dipole-induced dipole forces (O₂, CO₂, ...)
- Thermal properties of water
 - Very high heat capacity it takes a lot of heat to warm or cool water (due to strong H-bonding)
 Oceans help maintain a narrow *T* range on Earth
 - Very high ΔH_{vap} it takes a lot of heat to vaporize water (due to strong H-bonding) • Sweating helps maintain body temperature

- Surface properties of water
- Very high surface tension (strong H-bonding)
 Provides excellent capillary action (moisture in soil)
- Density of water
 - Ice has lower density than liquid water due to the open ice structure (hexagonal network of Hbonds); the liquid is packed more efficiently
- Negative slope of solid liquid-phase boundary (rare)
- Ice floats on the surface of lakes and prevents total freezing

12.6 The Solid State

- Amorphous solids random arrangement of structural units (rubber, plastics, ...)
- Crystalline solids structural units arranged in regular arrays (crystals with well defined shapes and surfaces)
- Crystal lattice a system of points defining the geometric pattern of the crystal
- Lattice points points with identical surroundings (can be occupied by atoms, ions or molecules)
- Unit cell a small set of lattice points sufficient to reproduce the entire lattice

- Coordination number the number of nearest neighbors of a particle in the lattice
 - SC \rightarrow coord. # = 6 \rightarrow each particle touches 6 other particles (4 in the same layer, 1 above and 1 below)
 - BCC \rightarrow coord. # = 8 \rightarrow each corner particle touches 8 particles in the body centers of the 8 cells it belongs to
 - FCC \rightarrow coord. # = 12 \rightarrow each corner particle touches 12 particles in the face centers (4 in the same layer, 4 above and 4 below)

• **Packing efficiency** – part of the total volume of the crystal that is occupied by the particles – For spherical particles of the same size, the efficiency increases with the coordination #

SC & BCC – in each layer, the particles form squares with diamond-shaped holes between them
 SC → 2nd, 3rd, ... layers directly on top of 1st layer
 BCC → 2nd layer fits in holes of 1st layer, and 3rd layer fits in holes of 2nd layer directly above 1st → Na, Fe, ...

Density of unit cells (*d*) – same as that of the crystal
– *m* → mass of unit cell; *m_p* → mass of 1 particle
– *V* → volume of unit cell; *V_p* → volume of 1 particle
– *V_a* → volume of unit cell occupied by particles
– *n* → # of particles per unit cell
– *M* → molar mass; *N_a* → Avogadro's number
– *Eff* → packing efficiency; *r* → radius of a particle
V_o = *V* × *Eff* = *n*×*V_p* ⇒ *V* =
$$\frac{n \times V_p}{Eff}$$

 $d = \frac{m}{V} = \frac{n \times m_p}{V} = \frac{n \times (M / N_a)}{V} = \frac{n \times M \times Eff}{n \times V_p \times N_a}$
 $V_p = \frac{4}{3}\pi \times r^3$ ⇒ $d = \frac{3}{4} \times \frac{M \times Eff}{\pi \times r^3 \times N_a}$

Example: Fe has a density of 7.90 g/cm³ and crystallizes in a BCC lattice. Calculate the atomic radius of Fe. $M \rightarrow 55.85$ g/mol; Eff $\rightarrow 0.68$; $r \rightarrow ???$ $d = \frac{3}{4} \times \frac{M \times Eff}{\pi \times r^3 \times N_a} \implies r = \sqrt[3]{\frac{3}{4} \times \frac{M \times Eff}{\pi \times d \times N_a}}$ $r = \sqrt[3]{\frac{3}{4} \times \frac{55.85}{3.14 \times 7.90}}$ g/cm³ $\times 6.022 \times 10^{23}$ /mol $r = 1.24 \times 10^{-8}$ cm = 124 pm

Types of Crystalline Solids

- Atomic solids consist of atoms
 - The atoms are held together by weak dispersion forces (Examples: Ne, Ar, Kr, Xe, Rn)
 - Quite soft; very low T_m ; poor electrical and thermal conductors (T_m increases with increasing molar mass)
- Molecular solids consist of molecules
 Non-polar molecules are held together by dispersion forces (Examples: O₂, CH₄, CO₂, ...)
 - Polar molecules are held together by dispersion, dipole-dipole and in some cases H-bonding forces (Examples: H₂O, SO₂, sugar, ...)
 - Soft; low T_m ; poor electrical and thermal conductors

• **Ionic solids** – consist of + and – ions

- Ions are held together by very strong ion-ion electrostatic attractions (ionic bonds) →
 Examples: NaCl, MgO, CaF₂, ...
- Hard and brittle; high T_m ; conduct electricity and heat when molten
- The unit cell has the same composition (ratio of cations to anions) as the empirical formula
- Typically the smaller cations fit in the gaps between the larger anions
 - Radius ratio $\rightarrow r_{cat}/r_{an}$
 - Depending on the radius ratio and the ion ratio, different structures are possible
- \rightarrow Ionic compounds with 1:1 ion ratio

- Cesium chloride structures BCC unit cell with eight ions in the corners and one counter-ion in the body center of the cube (CsCl, CsI, ...)
 - ≻Typical for compounds with radius ratios larger than 0.7 (cations and anions with similar sizes)

Coordination $\# \rightarrow (8,8) - 8$ for cations and 8 for anions

 > Zinc blende structures – FCC structure of anions penetrated by FCC structure of cations; each cation is tetrahedrally surrounded by 4 anions and vice versa (ZnS, CdS, AgI, CuCl, ...)
 > Coordination # → (4,4) – 4 for cations and 4 for anions

- \rightarrow Ionic compounds with 1:2 or 2:1 ion ratios
- Fluorite structures FCC unit cell of cations, penetrated by 8 anions in the gaps between the cations (CaF₂, SrF₂, BaCl₂, ...)

Typical for 1:2 compounds with large radius ratios **Coordination** $\# \rightarrow (8,4) - 8$ for cations and 4 for anions

Antifluorite structures –

FCC unit cell of anions, penetrated by 8 cations in the gaps between the anions $(K_2S, ...)$

- Typical for 2:1 compounds with small radius ratios
- > Coordination # → (4,8) 4for cations and 8 for anions

• Metallic solids – consist of metal atoms

- The atoms are held together by strong metallic bonding forces (Examples: Fe, Cu, Ti, Na, ...)
- Wide range of hardness; luster; malleable and ductile; wide range of T_m ; excellent electrical and thermal conductors
- Network solids consist of atoms
 - The atoms are held together by strong covalent bonds [Examples: C(diamond), SiO₂(quartz), ...]
 - Most are very hard; very high T_m ; usually poor electrical and thermal conductors
 - Hardness and conductivity vary with the way atoms are bonded together

Example: Carbon has to common allotropic forms:

- ▷ **Diamond** → tetrahedral network of covalently σ bonded C atoms in *sp*³ hybridization → extremely hard; poor conductivity (insulator)
- → Graphite → flat sheets of covalently bonded C atoms in sp^2 hybridization (can be viewed as condensed benzene rings with delocalized π-bonding) → soft and slippery (weak *IF*s between the sheets allow sliding); good conductivity (delocalization of the π-electrons)

The Band Theory of Solids

- Application of the MO theory to solids
 - A metallic crystal can be viewed as one enormous molecule made of many atoms
 - The valence **AO**s of these atoms merge to form delocalized **MO**s (*N* AOs produce *N* MOs)
 - The large number of MOs form "bands" of closely spaced energy levels
 - The different types of **AO**s (s, p, d, ...) form different bands (s-band, p-band, ...)
 - Some bands are separated by **band gaps** where energies are not allowed
 - -Bands can be empty, partly filled, or filled with e-

- The band occupied by the valence electrons is called valence band
- The band of empty orbitals directly above the valence band is called **conduction band**
- Electrons from the valence band can be excited to the conduction band and become mobile \rightarrow provide conductivity

Example:

In Li, each atom contributes 1 s-electron to the sband. N Li atoms contribute N electrons. N Li atoms have N s-orbitals and produce N MOs. N MOs can hold 2N electrons \Rightarrow The s-band is half-full.

- ➤ Metal conductors the valence and conduction bands overlap (no band gap) ⇒ the electrons need an extremely small amount of energy to jump in the conduction band
 - >Conductivity decreases with increasing *T* since the random motion of the atoms hinders the directional motion of electrons
- Semiconductors the valence and conduction bands are separated by a small band gap \Rightarrow the electrons need a fairly small amount of energy to jump in the conduction band
 - Conductivity increases with increasing *T* since the electrons are thermally excited to the conduction band