Kinetics: The Rates of Reactions

- Chemical kinetics - studies the reaction rates and mechanisms

16.1 Factors Affecting the Reaction Rate

- Chemical nature of the reactants - each reaction has its own characteristic rate
- Concentration - the reaction rate increases with increasing the reactant concentrations (the collision frequency increases)
- The reactants must collide in order to react

Rate \propto Collision freq. \propto Concentration

16.2 Expressing the Reaction Rate

- Reaction rate - change in the concentration (\boldsymbol{C}) of reactants or products per unit time (\boldsymbol{t})

$$
\begin{array}{ll}
& \text { Rate }=\Delta C / \Delta t \\
- \text { Units } \rightarrow \mathrm{M} / \mathrm{s} \text { or } \mathrm{mol} / \mathrm{L} \cdot \mathrm{~s}
\end{array}
$$

Reactant (A) \rightarrow Product (B)

$$
\Delta C<0 \quad \Delta C>0
$$

\rightarrow The rate is positive by convention, but ΔC is (-) for the reactants and $(+)$ for the products
\Rightarrow Rate $=-\Delta[\mathrm{A}] / \Delta t \quad$ or \quad Rate $=\Delta[\mathrm{B}] / \Delta t$ $>$ Square brackets represent the concentrations of the reactant $[\mathrm{A}]$ and product $[\mathrm{B}]$ in $\mathrm{mol} / \mathrm{L}$

- Physical state - the reaction rate increases with the degree of mixing (contact) between the reactants (depends on the reactant's phase)
- Temperature - the reaction rate increases with increasing the temperature (increases the collision frequency and the average kinetic energy of the molecules)
- The reactants must collide with sufficient energy in order to react

Rate \propto Collision energy \propto Temperature
Catalyst - increases (or decreases) the reaction rate by changing the reaction path (mechanism)

Reaction Rate and Stoichiometry

- ΔC is dependent on the stoichiometric coefficients of the reactants and products

For a reaction, $\quad \mathbf{A} \rightarrow \mathbf{2 B}$
$>$ The concentration of \mathbf{B} changes twice faster than the concentration of \mathbf{A}

$$
\Delta[\mathrm{B}] / \Delta t=2(-\Delta[\mathrm{A}] / \Delta t)
$$

$>$ To make the rate independent of the choice of a reactant or product, we use the convention:

For a reaction, $\quad \boldsymbol{a} \mathbf{A}+\boldsymbol{b B} \rightarrow \boldsymbol{c} \mathbf{C}+\boldsymbol{d} \mathbf{D}$
Rate $=-\frac{1}{a} \frac{\Delta[\mathrm{~A}]}{\Delta t}=-\frac{1}{b} \frac{\Delta[\mathrm{~B}]}{\Delta t}=\frac{1}{c} \frac{\Delta[\mathrm{C}]}{\Delta t}=\frac{1}{d} \frac{\Delta[\mathrm{D}]}{\Delta t}$

Example:

For the reaction $\mathbf{N}_{\mathbf{2}}+\mathbf{3 H}_{\mathbf{2}} \rightarrow \mathbf{\mathbf { N H } _ { 3 }}$, the rate of formation of NH_{3} is $\mathbf{1 . 4} \mathbf{M} / \mathbf{m i n}$. Calculate the rate of disappearance of H_{2} and the reaction rate.

$$
\begin{aligned}
& \frac{\Delta\left[\mathrm{NH}_{3}\right]}{\Delta t}=1.4 \frac{\mathrm{M}}{\mathrm{~min}} \rightarrow 1.4 \frac{\mathrm{~mol} \mathrm{NH}_{3}}{\mathrm{~L} \cdot \mathrm{~min}} \\
& 1.4 \frac{\mathrm{~mol} \mathrm{NH}_{3}}{\mathrm{~L} \cdot \mathrm{~min}} \times \frac{3 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}}=2.1 \frac{\mathrm{~mol} \mathrm{H}}{2} \\
& \mathrm{~L} \cdot \mathrm{~min}
\end{aligned}
$$

Rate $=\frac{1}{2} \frac{\Delta\left[\mathrm{NH}_{3}\right]}{\Delta t}=\frac{1}{2} 1.4 \frac{\mathrm{~mol} \mathrm{NH}}{3}-2 \cdot \mathrm{~min} \quad 0.70 \frac{\mathrm{~mol} \mathrm{NH}}{3}$

$>$ As the interval of time $\left(\boldsymbol{t}_{\boldsymbol{l}}, \boldsymbol{t}_{2}\right)$ gets smaller, the slope of a approaches the slope of b and the average rate approaches the instantaneous rate
\Rightarrow The instantaneous rate can be estimated by measuring the average rate in a narrow time interval
$>$ Normally the term reaction rate refers to the instantaneous rate

- Initial rate - the instantaneous rate at time, $\boldsymbol{t}=\mathbf{0}$ (the starting point of the reaction)
- For most reactions the rate decreases gradually after the starting point so the slope of the tangents gets smaller with time
- Initial rates are easier to measure and depend on the initial concentrations which are normally known
- For most reactions of the type

$$
a \mathbf{A}+b \mathrm{~B}+\ldots \rightarrow \text { Products }
$$

the rate law can be expressed in the form:

$$
\text { Rate }=k[\mathbf{A}]^{m}[\mathbf{B}]^{n} \ldots
$$

$\rightarrow \boldsymbol{k}$ - rate constant (depends on the nature of A, B, \ldots and the temperature)
$\rightarrow \boldsymbol{m}, \boldsymbol{n}, \ldots-$ reaction orders with respect to $\mathrm{A}, \mathrm{B}, \ldots$
$\rightarrow \boldsymbol{m}+\boldsymbol{n}+\ldots$ - overall order of the rate law
Example: $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Rate law \rightarrow Rate $=k\left[\mathbf{N}_{2} \mathrm{O}_{5}\right]$
$m=1 \rightarrow$ first order in $\mathrm{N}_{2} \mathrm{O}_{5}$
$m+n+\ldots=1 \rightarrow$ first order overall

Examples:

$\mathrm{CH}_{3} \mathrm{Br}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathbf{O H}+\mathrm{Br}^{-}$
Rate law \rightarrow Rate $=\boldsymbol{k}\left[\mathrm{CH}_{3} \mathrm{Br}\right]\left[\mathrm{OH}^{-}\right]$
$m=1 \rightarrow$ first order in $\mathbf{C H}_{3} \mathbf{B r}$
$n=1 \rightarrow$ first order in $\mathbf{O H}^{-}$
$m+n+\ldots=2 \rightarrow$ second order overall
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathbf{C O H}+\mathbf{H B r}$
Rate law \rightarrow Rate $=\boldsymbol{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathbf{C B r}\right]$ same as \rightarrow Rate $=\boldsymbol{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathbf{C B r}\right]^{1}\left[\mathrm{H}_{2} \mathrm{O}\right]^{0}$
$m=1 \rightarrow$ first order in $\left(\mathbf{C H}_{3}\right)_{3} \mathbf{C B r}$
$n=0 \rightarrow$ zero order in $\mathbf{H}_{\mathbf{2}} \mathrm{O}$
$m+n+\ldots=1 \rightarrow$ first order overall

Some Examples of Experimental Rate Laws

- General rate law expression:

$$
\text { Rate }=k[\mathrm{~A}]^{m}[\mathrm{~B}]^{n} \ldots
$$

Examples: $2 \mathrm{~N}_{2} \mathrm{O}_{\mathbf{5}}(\mathrm{g}) \rightarrow \mathbf{4 \mathrm { NO } _ { 2 }}(\mathrm{g})+\mathrm{O}_{\mathbf{2}}(\mathrm{g})$
Rate law \rightarrow Rate $=\boldsymbol{k}\left[\mathbf{N}_{\mathbf{2}} \mathbf{O}_{5}\right]$
$m=1 \rightarrow$ first order in $\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}}$ $m+n+\ldots=1 \rightarrow$ first order overall
$\mathbf{2 N O} \mathbf{2}(\mathrm{g}) \rightarrow \mathbf{2 N O}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g})$
Rate law \rightarrow Rate $=\boldsymbol{k}\left[\mathbf{N O}_{2}\right]^{2}$
$m=2 \rightarrow$ second order in $\mathbf{N O}_{\mathbf{2}}$ $m+n+\ldots=2 \rightarrow$ second order overall

$$
\begin{aligned}
& >\text { The reactions orders are not related to the } \\
& \text { stoichiometric coefficients of the reactants } \\
& >\text { The reaction orders can sometimes be fractional or } \\
& \text { negative numbers } \\
& >\text { The rate law can include concentrations of products } \\
& \text { Examples: } \\
& \mathbf{2 O}_{\mathbf{3}} \rightarrow \mathbf{3 O}_{\mathbf{2}} \\
& \text { Rate law } \rightarrow \text { Rate }=\boldsymbol{k}\left[\mathbf{O}_{3}\right]^{2}\left[\mathbf{O}_{2}\right]^{-1} \\
& \mathbf{2} \mathbf{S O}_{\mathbf{2}}+\mathbf{O}_{\mathbf{2}} \rightarrow \mathbf{S O}_{\mathbf{3}} \\
& \quad \text { Rate law } \rightarrow \text { Rate }=\boldsymbol{k}\left[\mathbf{S O}_{\mathbf{2}}\right]\left[\mathbf{S O}_{3}\right]^{-1 / 2} \\
& \mathbf{2} \mathbf{N H}_{\mathbf{3}} \rightarrow \mathbf{N}_{\mathbf{2}}+\mathbf{3 H}_{\mathbf{2}} \\
& \text { Rate law } \rightarrow \text { Rate }=\boldsymbol{k} \rightarrow \text { zero overall order } \\
& \hline
\end{aligned}
$$

$>$ The reactions orders can be determined by measuring the changes in the reaction rate upon changing the reactant concentrations

Example:

For the reaction $\mathbf{2 N O}+\mathbf{2 H}_{\mathbf{2}} \rightarrow \mathbf{N}_{\mathbf{2}}+\mathbf{2 H}_{\mathbf{2}} \mathbf{O}$, the rate increases by a factor of nine when the concentration of NO is tripled while the concentration of \mathbf{H}_{2} is kept constant. What is the order of the reaction with respect to NO?
Rate law \rightarrow Rate $=\boldsymbol{k}[\mathbf{N O}]^{m}\left[\mathbf{H}_{2}\right]^{n}$
$9 \times$ Rate $=k(3 \times[\mathbf{N O}])^{m}\left[\mathbf{H}_{2}\right]^{n}=3^{m} \times k[\mathbf{N O}]^{m}\left[\mathbf{H}_{2}\right]^{n}$
$9 \times$ Rate $=3^{m} \times$ Rate
$\Rightarrow 9=3^{m} \rightarrow \mathbf{m}=\mathbf{2} \rightarrow \mathbf{2}^{\text {nd }}$ order in NO

Example: Determine the rate law for the reaction $\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ from the following data:

Exp. $\#$	Initial Conc. $\times 10^{-2}(\mathrm{~mol} / \mathrm{L})$		Initial Rate $\times 10^{-3}$

\rightarrow Select experiments with the same concentrations of one of the reactants $\rightarrow(1,2)$ and $(1,3)$
\rightarrow Calculate the relative concentrations and rates by dividing with the smallest number in a column

Experimental Determination of Rate Laws

- Determination of reaction orders and rate constants
- The initial rate method - the initial rate (Rate ${ }_{0}$) of the reaction is measured at various initial concentrations ($[\mathbf{X}]_{0}$) of the reactants
$a \mathrm{~A}+\boldsymbol{b B} \rightarrow$ Products \quad Rate $_{0}=k[\mathrm{~A}]_{0}{ }^{m}[\mathrm{~B}]_{0}{ }^{n}$
\rightarrow If $[\mathbf{A}]_{0}$ is increased by a factor, f, while $[\mathbf{B}]_{0}$ is kept constant:
new Rate ${ }_{0}=\boldsymbol{k}\left(f \times[\mathrm{A}]_{0}\right)^{m}[\mathrm{~B}]_{0}{ }^{n}=f^{m} \times \boldsymbol{k}[\mathrm{A}]_{0}{ }^{m}[\mathrm{~B}]_{0}{ }^{n}$ new Rate $_{0}=\boldsymbol{f}^{m} \times$ Rate $_{0}$
\Rightarrow The initial rate increases by a factor of f^{n}

$\begin{array}{\|c\|} \hline \operatorname{Exp} \\ \# \end{array}$	Relative Conc.			Relative Rate
		O_{2}	NO	
1	$\begin{aligned} & 1.1 / 1.1=1.0 \\ & 2.0 / 1.1=1.8 \end{aligned} \times 1.8$		1.0	3.2/3.2=1.0 >1.81
2			1.0	$5.8 / 3.2=1.8 \gtrless \times 1.8$
$\begin{gathered} \operatorname{Exp} \\ \# \end{gathered}$	Relative Conc.			Relative Rate
	O_{2}	NO		
1	1.0			$3.2 / 3.2=1.0$ - $\mathbf{2}^{3.3}{ }^{2}$
3	1.0			17.0/3.2 $=5.3$

$\Rightarrow \mathrm{As}\left[\mathrm{O}_{2}\right]_{\mathrm{o}}$ increases by a factor of 1.8 , the initial rate increases by a factor of $1.8=1.8^{1} \rightarrow \mathbf{1}^{\text {st }}$ order in $\mathbf{O}_{\mathbf{2}}$
$\Rightarrow \mathrm{As}[\mathrm{NO}]_{o}$ increases by a factor of 2.3 , the initial rate increases by a factor of $5.3=2.3^{2} \rightarrow \mathbf{2}^{\text {nd }}$ order in NO

16.4 Integrated Rate Laws

- Give the concentration of the reactants as a function of time

- Zero order reactions

General reaction: $\mathbf{A} \rightarrow$ Products (Zero-order)
\rightarrow Rate $=\boldsymbol{k} \quad$ and \quad Rate $=-\Delta[\mathbf{A}] / \Delta t$
$-\Delta[\mathbf{A}] / \Delta t=\boldsymbol{k} \rightarrow$ Differential rate law (zero-order)

- Integration of the differential equation leads to:
$[\mathbf{A}]=[\mathbf{A}]_{\mathbf{0}}-\boldsymbol{k} \boldsymbol{t} \rightarrow$ Integrated rate law (zero-order)
- Gives the concentration of the reactant [A] at time t during the reaction
$-[A]_{\mathbf{0}}$ is the initial concentration at time $\boldsymbol{t}=\mathbf{0}$

- Second order reactions

General reaction: $\mathbf{A} \rightarrow$ Products ($2^{\text {nd }}$ order)
\rightarrow Rate $=\boldsymbol{k}[\mathbf{A}]^{2}$ and \quad Rate $=-\Delta[\mathbf{A}] / \Delta t$
$-\Delta[\mathbf{A}] / \Delta t=\boldsymbol{k}[\mathbf{A}]^{2} \rightarrow$ Differential rate law (2 $2^{\text {nd }}$ order)

- Integration of the differential equation leads to:
$1 /[\mathbf{A}]=\mathbf{1} /[\mathbf{A}]_{\mathbf{0}}+\boldsymbol{k t} \rightarrow$ Integrated rate law
(2 ${ }^{\text {nd }}$ order)
Example: For a given zero-order reaction the rate constant is $0.011 \mathrm{M} / \mathbf{s}$ at $25^{\circ} \mathrm{C}$. If the initial concentration of the reactant is $\mathbf{1 . 4 ~ M}$, what is its concentration after $\mathbf{1 . 5}$ minutes?
$[\mathrm{A}]=[\mathrm{A}]_{0}-k t=1.4 \mathrm{M}-0.011 \mathrm{M} / \mathrm{s} \times 90 \mathrm{~s}=0.4 \mathrm{M}$
- First order reactions

General reaction: $\mathbf{A} \rightarrow$ Products ($1^{\text {st }}$ order)
\rightarrow Rate $=\boldsymbol{k}[\mathbf{A}]$ and Rate $=-\Delta[\mathbf{A}] / \Delta t$
$-\Delta[\mathbf{A}] / \Delta \boldsymbol{t}=\boldsymbol{k}[\mathbf{A}] \rightarrow$ Differential rate law ($1^{\text {st }}$ order)

- Integration of the differential equation leads to:
$[\mathbf{A}]=[\mathbf{A}]_{0} \mathbf{e}^{-k t} \rightarrow$ Integrated rate law ($1^{\text {st }}$ order) \rightarrow Exponential form
- Take a natural logarithm of both sides:
$\left.\ln [A]=\ln [A]_{0}-\boldsymbol{k t}\right] \rightarrow$ Logarithmic form
- Gives the concentration of the reactant [A] at time \boldsymbol{t} during the reaction
$-[\mathbf{A}]_{0}$ is the initial concentration at time $\boldsymbol{t}=\mathbf{0}$

Example: The decomposition of HI at $25^{\circ} \mathrm{C}$ is a $\mathbf{2}^{\text {nd }}$ order reaction with a rate constant of $\mathbf{2 . 4} \times \mathbf{1 0}^{-\mathbf{2 1}}$ $\mathbf{L} / \mathbf{m o l} \cdot \mathbf{s}$. If the initial concentration of HI is $\mathbf{0 . 0 5 0}$ \mathbf{M}, how long would it take for $\mathbf{3 0 \%}$ of it to react?
$2 \mathrm{HI} \rightarrow \mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow$ Rate $=k[\mathrm{HI}]^{2} \rightarrow 2^{\text {nd }}$ order
$>30 \% \mathrm{HI}$ reacted $\leftrightarrow 70 \% \mathrm{HI}$ remaining
$\Rightarrow[\mathrm{HI}]_{\mathrm{o}}=0.050 \mathrm{M} \quad[\mathrm{HI}]=0.70 \times 0.050=0.035 \mathrm{M}$
$\rightarrow 1 /[\mathrm{HI}]=1 /[\mathrm{HI}]_{0}+k t \rightarrow 1 /[\mathrm{HI}]-1 /[\mathrm{HI}]_{0}=k t$
$\rightarrow t=\left(1 /[\mathrm{HI}]-1 /[\mathrm{HI}]_{0}\right) / k$
$t=\frac{\left(\frac{1}{0.035 \mathrm{~mol} / \mathrm{L}}-\frac{1}{0.050 \mathrm{~mol} / \mathrm{L}}\right)}{2.4 \times 10^{-21} \mathrm{~L} / \mathrm{mol} \mathrm{s}}=3.6 \times 10^{21} \mathrm{~s}=1.1 \times 10^{14} \mathrm{yr}$

Example: Determine the reaction order and the rate constant for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ from the following data: $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

Time (min)	$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$	In [$\left.\mathrm{N}_{2} \mathrm{O}_{5}\right]$	1/[$\left.\mathrm{N}_{2} \mathrm{O}_{5}\right]$	
0	0.0165	-4.104	60.6	\leftarrow Calculate
10	0.0124	-4.390	80.6	$\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ and
20	0.0093	-4.68	1.1×10^{2}	$1 /\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$
30 40	0.0071 0.0053	-4.95 -5.24	1.4×10^{2} 1.9×10^{2}	$1 /\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$
50	0.0039	-5.55	2.6×10^{2}	
60	0.0029	-5.84	3.4×10^{2}	

\rightarrow Using a trail-and-error approach, plot $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$,
$\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$, and $1 /\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ versus time until a straight line is obtained

$>$ Radioactive decay is a $1^{\text {st }}$ order process
Example: $\boldsymbol{t}_{1 / 2}$ is $\mathbf{5 7 0 0} \mathbf{~ y r}$ for the radioactive isotope of carbon, ${ }^{14} \mathbf{C}$. C-dating shows that the concentration of ${ }^{14} \mathrm{C}$ in an object has decreased to $\mathbf{2 5 \%}$ of its original value. How old is the object?

$$
\begin{aligned}
& \rightarrow t_{1 / 2}=0.693 / k \rightarrow k=0.693 / t_{1 / 2}=0.693 / 5700 \mathrm{yr} \\
& \rightarrow k=1.21 \times 10^{-4} \mathrm{yr}^{-1} \\
& \rightarrow\left[{ }^{14} \mathrm{C}\right]=\left[{ }^{14} \mathrm{C}\right]_{0} \mathrm{e}^{-k t} \quad \rightarrow \quad\left[{ }^{14} \mathrm{C}\right]=0.25\left[{ }^{14} \mathrm{C}\right]_{0} \\
& \rightarrow 0.25\left[{ }^{14} \mathrm{C}\right]_{0}=\left[{ }^{[4} \mathrm{C}\right]_{0} \mathrm{e}^{-k t} \rightarrow 0.25=\mathrm{e}^{-k t} \\
& \rightarrow \ln (0.25)=-k t \quad \rightarrow \quad t=-\ln (0.25) / k \\
& \rightarrow t=-\ln (0.25) / 1.21 \times 10^{-4} \mathrm{yr}^{-1}=11,000 \mathrm{yr}
\end{aligned}
$$

Reaction Half-Life

- Half-life $\left(t_{1 / 2}\right)$ - the time needed to reduce the reactant concentration to $1 / 2$ of its initial value
$>\boldsymbol{t}_{1 / 2}$ for $1^{\text {st }}$ order reactions
$\rightarrow[\mathrm{A}]=[\mathrm{A}]_{0} \mathrm{e}^{-k t} \quad \rightarrow \quad 1 / 2[\mathrm{~A}]_{0}=[\mathrm{A}]_{0} \mathrm{e}^{-k t_{1 / 2}}$
$\rightarrow \ln (1 / 2)=-\boldsymbol{k} t_{1 / 2} \quad \rightarrow \quad \ln (2)=\boldsymbol{k} t_{1 / 2}$
$\boldsymbol{t}_{1 / 2}=\ln (2) / \boldsymbol{k}=\mathbf{0 . 6 9 3 / k}$
$\Rightarrow \boldsymbol{t}_{1 / 2}$ is independent of the initial concentration $[\mathbf{A}]_{0}$
\Rightarrow During the course of the reaction, $\boldsymbol{t}_{1 / 2}$ remains the same, so it always takes the same time to half [A]

16.5 Theories of Chemical Kinetics The Effect of Temperature

- For most reactions, the reaction rate increases almost exponentially with \boldsymbol{T} (rate \sim doubles for every $10^{\circ} \mathrm{C}$ of $\boldsymbol{T} \uparrow$)
$-\boldsymbol{T}$ affects the rate through the rate constant, \boldsymbol{k}
- Arrhenius equation - gives the temperature dependence of \boldsymbol{k}

$$
k=A \mathrm{e}^{-E_{d} / R T}
$$

$\rightarrow \boldsymbol{A}$ - preexponential factor; $\boldsymbol{E}_{\boldsymbol{a}}$ - activation energy
\rightarrow Take a natural logarithm (ln) of both sides

$$
\ln k=\ln A-E_{a} / R T
$$

Example: For a given $1^{\text {st }}$ order reaction, \boldsymbol{k} is $\mathbf{2 . 6} \times \mathbf{1 0}^{\mathbf{- 1 0}} \mathrm{s}^{\mathbf{- 1}}$ at $\mathbf{3 0 0}{ }^{\circ} \mathrm{C}$ and $\mathbf{6 . 7} \times \mathbf{1 0}^{-4} \mathrm{~s}^{\mathbf{- 1}}$ at $500^{\circ} \mathbf{C}$. Calculate the activation energy.
$T_{1}=300^{\circ} \mathrm{C}=573 \mathrm{~K}$
$k_{1}=2.6 \times 10^{-10} \mathrm{~s}^{-1}$
$\boldsymbol{T}_{2}=500^{\circ} \mathrm{C}=\mathbf{7 7 3} \mathrm{K}$
$k_{2}=6.7 \times 10^{-4} \mathrm{~s}^{-1}$

$$
0
$$

$$
\begin{aligned}
& E_{a}=-R\left(\ln \frac{k_{2}}{k_{1}}\right)\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)^{-1} \\
& E_{a}=-8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\left(\ln \frac{6.7 \times 10^{-4} \mathrm{~s}^{-1}}{2.6 \times 10^{-10} \mathrm{~s}^{-1}}\right)\left(\frac{1}{773 \mathrm{~K}}-\frac{1}{573 \mathrm{~K}}\right)^{-1} \\
& E_{a}=2.72 \times 10^{5} \mathrm{~J} / \mathrm{mol}=272 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

$>$ For two different temperatures, $\boldsymbol{T}_{\boldsymbol{1}}$ and \boldsymbol{T}_{2}
$\left.\begin{array}{ll}\rightarrow & \ln k_{2}=\ln A-E_{a} / R T_{2} \\ \rightarrow & \ln k_{1}=\ln A-E_{a} / R T_{1}\end{array} \right\rvert\, \odot$

$$
\Rightarrow \ln \frac{k_{2}}{k_{1}}=-\frac{E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

\rightarrow Allows the determination of $\boldsymbol{E}_{\boldsymbol{a}}$ by measuring \boldsymbol{k} at two different \boldsymbol{T} s
\rightarrow Allows the calculation of \boldsymbol{k} at a given \boldsymbol{T}, if \boldsymbol{k} is known at another $\boldsymbol{T}\left(\boldsymbol{E}_{a}\right.$ must be known too)

Activation energy $\left(\boldsymbol{E}_{a}\right)$ - the minimum collision energy required for the reaction to occur (not all collisions result in reaction)
$\rightarrow \boldsymbol{f}$ - fraction of collisions with energy $\boldsymbol{E}>\boldsymbol{E}_{a}$ (only collisions with $\boldsymbol{E}>\boldsymbol{E}_{a}$ can lead to reaction)

\rightarrow The reaction rate is proportional to f $\Rightarrow \uparrow T \Rightarrow \uparrow f \Rightarrow \uparrow$ Rate $\Rightarrow \uparrow E_{a} \Rightarrow \downarrow f \Rightarrow \downarrow$ Rate
$>$ Steric factor (\boldsymbol{p}) - the colliding molecules must have proper orientation with respect to each other in order to react
$\rightarrow \boldsymbol{p}$ - fraction of the total \# of collisions having proper orientations ($0<\boldsymbol{p}<\mathbf{1}$)
\rightarrow The reaction rate is proportional to \boldsymbol{p} \rightarrow Effective collisions - having $\boldsymbol{E}>\boldsymbol{E}_{a}$ and proper orientation

- Activated complex theory - the reacting molecules form a high energy complex which is unstable and breaks down to form either the products or the original reactants

$$
\mathrm{A}+\mathrm{B} \leftrightarrow[\mathrm{~A}--\mathrm{B}]^{*} \leftrightarrow \text { Products }
$$

$-\boldsymbol{E}_{a}$ is the height of the barrier between the reactants and the transition state
$-\boldsymbol{E}_{a}$ is needed to weaken the bonds in the reactants so that the new bonds in the products can be formed

- Every reaction (every step in a reaction) goes through its own transition state
- Theoretically all reactions are reversible since once reached the transition state can go forward to products or back to reactants
Reaction energy diagrams - show the energy profile of the reaction $\left(\boldsymbol{E}_{a(f w d)}, \boldsymbol{E}_{a(\text { rev })}\right.$, and $\left.\Delta \boldsymbol{H}_{r x n}\right)$

16.6 Reaction Mechanisms

- Sequences of molecular level steps (called elementary reactions) that sum up to the overall reaction
- Elementary reactions (steps) - describe individual molecular events (collisions)
Example: $\mathbf{2 O}_{\mathbf{3}}(\mathrm{g}) \rightarrow \mathbf{3 O}_{\mathbf{2}}(\mathrm{g})$
\rightarrow Proposed 2 step mechanism:
$\left.\begin{array}{ll}\text { 1. } & \mathrm{O}_{3} \rightarrow \mathrm{O}_{2}+\mathrm{O} \\ \text { 2. } \mathrm{O}_{3}+\mathrm{O} \rightarrow \mathbf{2} \mathrm{O}_{2}\end{array} \right\rvert\, \oplus \Rightarrow 2 \mathrm{O}_{3} \rightarrow \mathbf{3 \mathrm { O } _ { 2 }}$ (overall)
$>$ Reaction intermediate - formed in one step and used up in another (does not appear in the overall reaction) $\boldsymbol{\rightarrow} \mathbf{O}$ is an intermediate
\rightarrow Reaction intermediates are usually unstable species, but some are stable enough to be isolated
- Molecularity - the number of reactant species involved in an elementary reaction (the number of colliding species)
Example: $\mathbf{2 O}_{\mathbf{3}}(\mathrm{g}) \rightarrow \mathbf{3 O}_{\mathbf{2}}(\mathrm{g})$
$\mathbf{O}_{\mathbf{3}} \rightarrow \mathbf{O}_{\mathbf{2}}+\mathbf{O} \quad$ (1 reactant molecule \rightarrow Unimolecular)
$\mathbf{O}_{\mathbf{3}}+\mathrm{O} \rightarrow \mathbf{2 O}_{\mathbf{2}}$ (2 reactant species \rightarrow Bimolecular)
\rightarrow Termolecular reactions are very rare - very low probability for a three-particle collision with enough energy and proper orientation
\rightarrow Higher order molecularities are not known

- Rate laws be derived - The react stoichiom \rightarrow Applies \Rightarrow Overall	for elementary rea from the reaction on orders are equal to etric coefficients of th $\mathrm{iA}+\mathrm{jB} \rightarrow \text { Products }$ $\text { Rate }=k[A]^{i}[B]^{j}$ only to elementary reac action order $(\mathrm{i}+\mathrm{j})=$	ions - can chiometry eactants s! lecularity
Table 16.6 Rate Laws for General Elementary Steps		
Elementary Step	Molecularity	Rate Law
\longrightarrow produc	Unimolecular	Rate $=k[\mathrm{~A}]$
$2 \mathrm{~A} \longrightarrow$ produc	Bimolecular	Rate $=k[\mathrm{~A}]^{2}$
$\mathrm{A}+\mathrm{B} \longrightarrow$ produc	Bimolecular	Rate $=k[\mathrm{~A}][\mathrm{B}]$
$2 \mathrm{~A}+\mathrm{B} \longrightarrow$ produc	Termolecular	Rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]$

1. $2\left\{\mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow \mathrm{NO}_{2}+\mathrm{NO}_{3}\right\}$
2. $\mathrm{NO}_{2}+\mathrm{NO}_{3} \rightarrow \mathbf{N O}_{2}+\mathbf{O}_{\mathbf{2}}+\mathrm{NO} \oplus \Rightarrow$
3. $\mathrm{NO}+\mathrm{NO}_{3} \rightarrow \mathbf{2 N O}$
$2 \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{NO}_{2}+\mathrm{NO}_{3}^{-}+\mathrm{NO}+\mathrm{NO}_{3}^{-} \rightarrow$

$$
2 \mathrm{NO}_{2}+2 \mathrm{NO}_{3}^{-}+\mathrm{NO}_{2}^{-}+\mathrm{O}_{2}+\mathrm{NO}+2 \mathrm{NO}_{2}
$$

$\Rightarrow \mathbf{2} \mathrm{N}_{2} \mathrm{O}_{5} \rightarrow \mathbf{4 \mathrm { NO } _ { 2 }}+\mathrm{O}_{2} \quad$ (overall reaction)
$\rightarrow \mathrm{NO}_{3}$ and NO are produced in the $1^{\text {st }}$ and $2^{\text {nd }}$ steps and consumed in the $2^{\text {nd }}$ and $3^{\text {rd }}$ steps (not present in the overall reaction) \Rightarrow intermediates
> The rate law of the overall reaction can be deduced from the rate laws of the elementary reactions

Example: For the following three-step mechanism, determine the rate law and molecularity of each step, identify the intermediate and write the overall balanced equation.

1. $2\left\{\mathbf{N}_{2} \mathrm{O}_{5} \rightarrow \mathbf{N O}_{2}+\mathbf{N O}_{3}\right\}$
2. $\mathrm{NO}_{2}+\mathrm{NO}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}+\mathrm{NO}$
3. $\mathbf{N O}+\mathbf{N O}_{\mathbf{3}} \boldsymbol{\rightarrow} \mathbf{2} \mathbf{N O}_{\mathbf{2}}$
$\rightarrow 2\{\ldots\}$ - the $1^{\text {st }}$ equation is taken twice
4. Rate $_{1}=\boldsymbol{k}_{1}\left[\mathbf{N}_{2} \mathrm{O}_{5}\right] \quad \rightarrow$ unimolecular
5. Rate $_{2}=k_{2}\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{3}\right] \rightarrow$ bimolecular
6. Rate $_{3}=k_{3}[\mathrm{NO}]\left[\mathrm{NO}_{3}\right] \rightarrow$ bimolecular

- Rate-determining step (RDS) - the slowest
step in a mechanism (limits the rate of the
overall reaction)
Rate = Rate of RDS
Correlating Mechanisms and Rate Laws
- The validity of a mechanism can be tested by
correlating it with the experimental rate law
- The elementary steps must add up to the overall
reaction
- The elementary steps must be physically
reasonable (uni- or bi-molecular)
- The rate law of the $\boldsymbol{R D S}$ must agree with the
experimental rate law
III. 1. $\mathrm{NO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$
[Slow,RDS]

2. $\mathrm{N}_{2} \mathrm{O}_{4}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{NO}_{2}+\mathrm{CO}_{2}$ [Fast]
$\oplus \rightarrow \mathrm{NO}_{\mathbf{2}}+\mathbf{C O} \rightarrow \mathbf{N O}+\mathbf{C O}_{\mathbf{2}} \quad$ (overall)
Rate $=$ Rate $_{1}=k_{1}\left[\mathrm{NO}_{2}\right]\left[\mathrm{NO}_{2}\right]=k_{1}\left[\mathrm{NO}_{2}\right]^{2}$
\rightarrow Consistent with the exp. rate law $\left(\boldsymbol{k}=\boldsymbol{k}_{\boldsymbol{I}}\right)$
\Rightarrow Both (II) and (III) are physically reasonable (involve bimolecular steps) and consistent with the experimental rate law \rightarrow more data are needed to give preference to one of them
$>$ Mechanisms can never be proved by kinetics data alone; we can only reject a mechanism or state that a mechanism is consistent with the kinetics data

\rightarrow [Int] can not be in the rate law (intermediate) and must be expressed through the concentrations of the reactants (or products) in the overall reaction
\rightarrow If the first reaction is fast and reversible, it quickly reaches equilibrium and the rate of formation of the intermediate is equal to the rate of its consumption (steady state approximation)
\rightarrow The steady state approximation allows the calculation of [Int]

Example: $2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow \mathbf{2 N O B r}(\mathrm{g})$
Experimental rate law: Rate $=\boldsymbol{k}[\mathbf{N O}]^{2}\left[\mathrm{Br}_{2}\right]$
\rightarrow Proposed mechanism:

1. $\mathrm{NO}+\mathrm{Br}_{2} \underset{k_{-l}}{\stackrel{k_{1}}{\longrightarrow}} \mathrm{NOBr}_{2}$
[Fast, revers.]
2. $\mathrm{NOBr}_{2}+\mathrm{NO} \xrightarrow{\boldsymbol{N}_{-1}} 2 \mathrm{NOBr}$
[Slow, RDS]
$\oplus \rightarrow \quad \mathbf{2 N O}+\mathbf{B r}_{2} \rightarrow \mathbf{2 N O B r}$
(overall)
\Rightarrow Rate $=$ Rate $_{2}=\boldsymbol{k}_{2}[\mathrm{NO}]\left[\mathrm{NOBr}_{2}\right]$
$\rightarrow \mathbf{N O B r}_{2}$ is an intermediate and must be expressed through the reactants
\rightarrow The $1^{\text {st }}$ step reaches equilibrium so the rates of the forward (Rate $_{\text {I }}$) and reverse (Rate $_{-I}$) reactions are equal

1. $\mathrm{NO}+\mathrm{Br}_{2} \xrightarrow[k_{1}]{\stackrel{k_{1}}{\leftrightarrows}} \mathrm{NOBr}_{2}$ $[$ Fast, revers. $]$ 2. $\mathrm{NOBr}_{2}+\mathrm{NO} \xrightarrow{k_{2}} 2 \mathrm{NOBr}$ $[$ Slow, RDS $]$ \Rightarrow Rate $=$ Rate $_{2}=k_{2}[\mathrm{NO}]\left[\mathrm{NOBr}_{2}\right]$
$\begin{aligned} & \rightarrow \quad \text { Rate }_{1}=\text { Rate }_{-1} \rightarrow \quad k_{1}\left[\mathrm{NO}_{2}\right]\left[\mathrm{Br}_{2}\right]=\boldsymbol{k}_{-1}\left[\mathrm{NOBr}_{2}\right] \\ & \rightarrow \quad\left[\mathrm{NOBr}_{2}\right]=\left(k_{1} / k_{-1}\right)[\mathrm{NO}]\left[\mathrm{Br}_{2}\right] \\ & \Rightarrow \text { Rate }=\boldsymbol{k}_{2}[\mathrm{NO}]\left[\mathrm{NOBr}_{2}\right]=\boldsymbol{k}_{2}[\mathrm{NO}]\left(k_{1} / k_{-1}\right)[\mathrm{NO}]\left[\mathrm{Br}_{2}\right] \\ & \Rightarrow \text { Rate }=\left(k_{2} k_{I} / k_{-1}\right)\left[\mathrm{NO}^{2}\left[\mathrm{Br}_{2}\right]=\boldsymbol{k}[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right]\right. \end{aligned}$
\rightarrow Experimental rate law: Rate $=\boldsymbol{k}[\mathbf{N O}]^{2}\left[\mathrm{Br}_{2}\right]$ \rightarrow Consistent with the exp. rate law $\left(\boldsymbol{k}=\boldsymbol{k}_{2} \boldsymbol{k}_{I} / \boldsymbol{k}_{-1}\right)$

16.7 Catalysis

- Catalyst - a substance that increases the reaction rate without being consumed in it
- In general catalysts increase the rate by lowering the activation energy $\left(E_{a}\right)$ of the reaction

- Catalysts provide a different mechanism for the reaction - Catalysts speedup both the forward and reverse reactions - Catalysts don't change the $\Delta \boldsymbol{H}_{r}$
- Homogeneous catalysis - the catalyst is in the same phase as the reactants
Example: Decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$

$$
\mathbf{2} \mathbf{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \xrightarrow{\mathrm{Br}_{2}(\mathrm{aq})} \mathbf{2 \mathbf { H } _ { 2 } \mathrm { O } (\mathrm { l }) + \mathrm { O } _ { \mathbf { 2 } } (\mathrm { g })}
$$

$\rightarrow \mathrm{Br}_{2}(\mathrm{aq})$ is in the same phase as $\mathbf{H}_{\mathbf{2}} \mathrm{O}_{\mathbf{2}}(\mathrm{aq})$
$\rightarrow \mathrm{Br}_{2}$ catalyses the reaction by providing a two step mechanism with lower $\boldsymbol{E}_{\boldsymbol{a}}$

1. $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{Br}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{Br}^{-}+2 \mathrm{H}^{+}+\mathrm{O}_{\mathbf{2}}(\mathrm{g})$
2. $\mathbf{H}_{2} \mathrm{O}_{\mathbf{2}}(\mathrm{aq})+2 \mathrm{Br}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{Br}_{2}(\mathrm{aq})+\mathbf{2} \mathrm{H}_{\mathbf{2}} \mathrm{O}(\mathrm{l})$
$\rightarrow \mathrm{Br}_{2}$ is not consumed in the reaction

- Heterogeneous catalysis - the catalyst is in a phase different from that of the reactants
Example: Hydrogenation of ethylene

