Kinetics: The Rates of Reactions

Chemical kinetics – studies the reaction rates and mechanisms

16.1 Factors Affecting the Reaction Rate

- Chemical nature of the reactants each reaction has its own characteristic rate
- **Concentration** the reaction rate increases with increasing the reactant concentrations (the collision frequency increases)
 - The reactants must collide in order to react

Rate ∞ Collision freq. ∞ Concentration

- **Physical state** the reaction rate increases with the degree of mixing (contact) between the reactants (depends on the reactant's phase)
- **Temperature** the reaction rate increases with increasing the temperature (increases the collision frequency and the average kinetic energy of the molecules)
 - The reactants must collide with sufficient energy in order to react

Rate \propto *Collision energy* \propto *Temperature*

• Catalyst – increases (or decreases) the reaction rate by changing the reaction path (mechanism)

Example:

For the reaction $N_2 + 3H_2 \rightarrow 2NH_3$, the rate of formation of NH₃ is **1.4 M/min**. Calculate the rate of disappearance of H₂ and the reaction rate.

$$\frac{\Delta[\mathrm{NH}_3]}{\Delta t} = 1.4 \frac{\mathrm{M}}{\mathrm{min}} \rightarrow 1.4 \frac{\mathrm{mol} \ \mathrm{NH}_3}{\mathrm{L} \cdot \mathrm{min}}$$

$$1.4 \frac{\mathrm{mol} \ \mathrm{NH}_3}{\mathrm{L} \cdot \mathrm{min}} \times \frac{3 \ \mathrm{mol} \ \mathrm{H}_2}{2 \ \mathrm{mol} \ \mathrm{NH}_3} = 2.1 \frac{\mathrm{mol} \ \mathrm{H}_2}{\mathrm{L} \cdot \mathrm{min}}$$

$$Rate = \frac{1}{2} \frac{\Delta[\mathrm{NH}_3]}{\Delta t} = \frac{1}{2} 1.4 \frac{\mathrm{mol} \ \mathrm{NH}_3}{\mathrm{L} \cdot \mathrm{min}} = 0.70 \frac{\mathrm{mol} \ \mathrm{NH}_3}{\mathrm{L} \cdot \mathrm{min}}$$

- As the interval of time (t_1, t_2) gets smaller, the slope of *a* approaches the slope of *b* and the average rate approaches the instantaneous rate
 - ⇒The instantaneous rate can be estimated by measuring the average rate in a narrow time interval
- Normally the term reaction rate refers to the instantaneous rate
- Initial rate the instantaneous rate at time, *t*=0 (the starting point of the reaction)
 - For most reactions the rate decreases gradually after the starting point so the slope of the tangents gets smaller with time
 - Initial rates are easier to measure and depend on the initial concentrations which are normally known

16.3 Rate Laws

• **Rate law** – the dependence of the instantaneous rate on the concentrations of the different species in the reaction → **determined experimentally**

Example: $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

- For most reactions of the type $aA + bB + ... \rightarrow Products$ the rate law can be expressed in the form: $Rate = k[A]^m[B]^n ...$ $\rightarrow k - rate constant (depends on the nature of A, B, ...)$ $\rightarrow m, n, ... - reaction orders with respect to A, B, ...$ $\rightarrow m + n + ... - overall order of the rate law$ Example: $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ Rate law $\rightarrow Rate = k[N_2O_5]$ $m = 1 \rightarrow first order in N_2O_5$ $m + n + ... = 1 \rightarrow first order overall$ Some Examples of Experimental Rate Laws – General rate law expression: $Rate = k[A]^m[B]^n \dots$ Examples: $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ Rate law $\rightarrow Rate = k[N_2O_5]$ $m = 1 \rightarrow \text{first order in } N_2O_5$ $m + n + \dots = 1 \rightarrow \text{first order overall}$ $2NO_2(g) \rightarrow 2NO(g) + O_2(g)$ Rate law $\rightarrow Rate = k[NO_2]^2$ $m = 2 \rightarrow \text{second order in } NO_2$ $m + n + \dots = 2 \rightarrow \text{second order overall}$

Examples: $CH_3Br + OH^- \rightarrow CH_3OH + Br^-$ Rate law $\rightarrow Rate = k[CH_3Br][OH^-]$ $m = 1 \rightarrow first$ order in CH_3Br $n = 1 \rightarrow first$ order in $OH^$ $m + n + ... = 2 \rightarrow second order overall$ $(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3COH + HBr$ Rate law $\rightarrow Rate = k[(CH_3)_3CBr]$ same as $\rightarrow Rate = k[(CH_3)_3CBr]^1[H_2O]^0$ $m = 1 \rightarrow first$ order in $(CH_3)_3CBr$ $n = 0 \rightarrow zero$ order in H_2O $m + n + ... = 1 \rightarrow first$ order overall

The reactions orders are not related to the stoichiometric coefficients of the reactants	
The reaction orders can sometimes be fractional energy numbers	or
> The rate law can include concentrations of produ	cts
Examples:	
$2O_3 \rightarrow 3O_2$ Rate law $\rightarrow Rate = k[O_3]^2[O_2]^{-1}$	
$2SO_2 + O_2 \rightarrow SO_3$ Rate law $\rightarrow Rate = k[SO_2][SO_3]^{-1/2}$	
$2\mathbf{NH}_{3} \rightarrow \mathbf{N}_{2} + 3\mathbf{H}_{2}$ Rate law $\rightarrow Rate = k \rightarrow zero overall order$	

The reactions orders can be determined by measuring the changes in the reaction rate upon changing the reactant concentrations
Example:
For the reaction $2NO + 2H_2 \rightarrow N_2 + 2H_2O$, the rate increases by a factor of nine when the concentration of NO is tripled while the concentration of H ₂ is kept constant. What is the order of the reaction with respect to NO ?
Rate law $\rightarrow Rate = k[NO]^{m}[H_{2}]^{n}$
$9 \times Rate = k(3 \times [NO])^m [H_2]^n = 3^m \times k[NO]^m [H_2]^n$
$9 \times Rate = 3^m \times Rate$

 \Rightarrow 9 = 3^{*m*} \rightarrow m = 2 \rightarrow 2nd order in NO

Experimental Determination of Rate Laws

- Determination of reaction orders and rate constants
 - The initial rate method the initial rate ($Rate_0$) of the reaction is measured at various initial concentrations ($[X]_0$) of the reactants

$aA + bB \rightarrow Products$ $Rate_{0} = k[A]_{0}^{m}[B]_{0}^{n}$

 \rightarrow If $[\mathbf{A}]_{\mathbf{0}}$ is increased by a factor, f, while $[\mathbf{B}]_{\mathbf{0}}$ is kept constant:

new Rate₀ = $k(f \times [A]_0)^m [B]_0^n = f^m \times k[A]_0^m [B]_0^n$ new Rate₀ = $f^m \times Rate_0$

 \Rightarrow The initial rate increases by a factor of f^m

Example: Determine the rate law for the					
reac	reaction $O_2(g) + 2NO(g) \rightarrow 2NO_2(g)$ from the				
follo	owing data:				
Exp.	Initial Conc. ×10 ⁻² (mol/L)	Initial Rate ×10 ⁻³			
		(1/T)			

L'up.	minuar conte.		minuter reace x10
#	O ₂	NO	(mol/L.s)
1	1.1	1.3	3.2
2	2.0	1.3	5.8
3	1.1	3.0	17.0

→ Select experiments with the same concentrations of one of the reactants \rightarrow (1, 2) and (1, 3)

→ Calculate the relative concentrations and rates by dividing with the smallest number in a column

Ex	кр	Relative Conc.		Relative Rate	
#	ŧ		O ₂	NO	
1		1.1/1.1=1.0		1.0	3.2/3.2=1.0 x1.8 ¹
2	2	2.0/1.1=1.8		1.0	5.8/3.2=1.8
Ex	Exp Relative Conc.		Relative Rate		
#	ŧ	O ₂	O ₂ NO		
1	l	1.0 1.3/1.3=1.0		3.2/3.2=1.0	
3	;	1.0 3.0/1.3=2.3		~2.0	17.0/3.2=5.3
⇒/ i	\Rightarrow As $[O_2]_0$ increases by a factor of 1.8, the initial rate increases by a factor of $1.8=1.8^1 \rightarrow 1^{st}$ order in O_2				
⇒/ i	As nc	[NO] _o reases	increases by a by a factor of 5	factor $65.3=2.3^2$	of 2.3, the initial rate $rate \rightarrow 2^{nd}$ order in NO

Alter	native method.	•		
Exp.#	Initial Conc.	×10 ⁻² (mol/L)	Initial Rate ×10-3	
	O ₂	NO	(mol/L.s)	
1	1.1	1.3	3.2	
2	2.0	1.3	5.8	
3	1.1	3.0	17.0	
$\rightarrow Rate$	$= k[O_2]^m[NO]$	n		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$3.2 \times 10^{-3} = k(1.1)$ $5.8 \times 10^{-3} = k (2.0)$ $7.0 \times 10^{-3} = k (1.1)$ $\frac{k \times 2.0^{m} \times 1.3}{k \times 1.1^{m} \times 1.3}$ $\frac{k \times 1.1^{m} \times 3.0}{k \times 1.1^{m} \times 3.0}$	$ \times 10^{-2})^{m} (1.3 \times 10^{-2})^{m} (1.3 \times 10^{-2})^{m} (1.3 \times 10^{-2})^{m} (3.0 \times 1$	$\begin{array}{c} \begin{array}{c} -2^{-2})^n \\ (-2)^n \\ (10^{-2})^n \end{array} \xrightarrow{\text{Divide eq.2 by eq.1}} \\ \begin{array}{c} \text{and eq.3 by eq.1} \\ (10^{-2})^n \end{array} \xrightarrow{1} \\ \begin{array}{c} 1 \\ 1.1 \\ (30)^n \end{array} \xrightarrow{1} \\ \end{array}$	
$\frac{17.0}{3.2} = \frac{k \times 1.1^m \times 3.0^n}{k \times 1.1^m \times 1.3^n} \Rightarrow \frac{17.0}{3.2} = \left(\frac{3.0}{1.3}\right) \Rightarrow 5.3 = 2.3^m$				

$\Rightarrow Rate = k[O_2][NO]^2$				
→The reaction is 3rd-overall order				
\rightarrow Determine the rate constant by substituting the initial concentrations and initial rate from one of the experiments and solve the equation for <i>k</i>				
→From Exp. #2	1:			
k – Rate	$3.2 \times 10^{-3} \text{ mol/L} \cdot \text{s}$			
$[O_2][NO]^2$	$1.1 \times 10^{-2} \text{ mol/L} \times (1.3 \times 10^{-2} \text{ mol/L})^2$			
$k = 1.7 \times 10^3 \text{ L}^2/\text{mol}^2 \cdot \text{s}$				
 Note that the units of k depend on the overall order of the reaction and are different for different rate laws 				

Time (min)	[N2O5]	In [N2O5]	1/[N2O5]	
0	0.0165	-4.104	60.6	← Calculate
10	0.0124	-4.390	80.6	In[N ₂ O ₂] and
20	0.0093	-4.68	1.1×10 ²	1/[N 0]
30	0.0071	-4.95	1.4×10 ²	$1/[N_2O_5]$
40	0.0053	-5.24	1.9×10 ²	
50	0.0039	-5.55	2.6×10 ²	
00	0 0000	E 04	31-102	

Reaction Half-Life • Half-life $(t_{\frac{1}{2}})$ – the time needed to reduce the reactant concentration to $\frac{1}{2}$ of its initial value > $t_{1/2}$ for 1st order reactions $\rightarrow [A] = [A]_0 e^{-kt} \rightarrow \frac{1}{2} [A]_0 = [A]_0 e^{-kt_{\frac{1}{2}}}$ $\rightarrow \ln(\frac{1}{2}) = -kt_{\frac{1}{2}} \rightarrow \ln(2) = kt_{\frac{1}{2}}$ $t_{\frac{1}{2}} = \ln(2)/k = 0.693/k$ \Rightarrow During the course of the reaction, $t_{\frac{1}{2}}$ remains the same, so it always takes the same time to half [A]

>
$$t_{1/2}$$
 for zero-order reactions
→ $[\mathbf{A}] = [\mathbf{A}]_{0} - kt$ → $t_{2}[\mathbf{A}]_{0} = [\mathbf{A}]_{0} - kt_{t_{2}}$
→ $kt_{t_{2}} = [\mathbf{A}]_{0} - t_{2}[\mathbf{A}]_{0}$ → $kt_{t_{2}} = t_{2}[\mathbf{A}]_{0}$
 $t_{t_{2}} = [\mathbf{A}]_{0}/2k$
⇒ $t_{t_{2}}$ is directly proportional to $[\mathbf{A}]_{0}$
> $t_{1/2}$ for 2^{nd} order reactions
→ $1/[\mathbf{A}] = 1/[\mathbf{A}]_{0} + kt$ → $1/t_{2}[\mathbf{A}]_{0} = 1/[\mathbf{A}]_{0} + kt_{t_{2}}$
→ $2/[\mathbf{A}]_{0} - 1/[\mathbf{A}]_{0} = kt_{t_{2}}$ → $1/[\mathbf{A}]_{0} = kt_{t_{2}}$
 $t_{t_{2}} = 1/k[\mathbf{A}]_{0}$
⇒ $t_{t_{2}}$ is inversely proportional to $[\mathbf{A}]_{0}$

➢ Radioactive decay is a 1st order process
Example: $t_{1/2}$ is 5700 yr for the radioactive isotope of carbon, ¹⁴C. C-dating shows that the concentration of ¹⁴C in an object has decreased to 25% of its original value. How old is the object?
→ $t_{1/2} = 0.693/k$ → $k = 0.693/t_{1/2} = 0.693/5700$ yr
→ $k = 1.21 \times 10^{-4}$ yr⁻¹
→ $[1^{14}C] = [1^{14}C]_0 e^{-kt}$ → $[1^{14}C] = 0.25[1^{14}C]_0$ → $0.25[1^{14}C]_0 = [1^{14}C]_0 e^{-kt}$ → $0.25 = e^{-kt}$ → ln(0.25) = -kt → t = -ln(0.25) / k→ $t = -ln(0.25) / 1.21 \times 10^{-4}$ yr⁻¹ = 11,000 yr

16.5 Theories of Chemical Kinetics The Effect of Temperature

- For most reactions, the reaction rate increases almost exponentially with T (rate ~ doubles for every 10°C of T^{\uparrow})
- -T affects the rate through the rate constant, k
- Arrhenius equation gives the temperature dependence of *k*

$$k = A e^{-E_a/RT}$$

 $\rightarrow A$ – preexponential factor; E_a – activation energy \rightarrow Take a natural logarithm (ln) of both sides

 $\ln k = \ln A - E_a / RT$

- \rightarrow Allows the determination of E_a by measuring k at two different Ts
- \rightarrow Allows the calculation of *k* at a given *T*, if *k* is known at another *T*(*E_a* must be known too)

$$Z_o$$
 – proportionality constant (depends on \sqrt{T})

→ The reaction rate is proportional to
$$f$$

 $\Rightarrow \uparrow T \Rightarrow \uparrow f \Rightarrow \uparrow Rate$
 $\Rightarrow \uparrow E_a \Rightarrow \downarrow f \Rightarrow \downarrow Rate$
 $f = e^{-E_a/RT}$
> Steric factor (p) – the colliding molecules must
have proper orientation with respect to each other in
order to react
→ p – fraction of the total # of collisions having
proper orientations (0
→ The reaction rate
is proportional to p
→ Effective collisions

Effective

- having $E > E_a$ and proper orientation

- $-E_a$ is the height of the barrier between the reactants and the transition state
- $-E_a$ is needed to weaken the bonds in the reactants so that the new bonds in the products can be formed
- -Every reaction (every step in a reaction) goes through its own transition state
- Theoretically all reactions are reversible since once reached the transition state can go forward to products or back to reactants
- Reaction energy diagrams show the energy profile of the reaction $(E_{a(fivd)}, E_{a(rev)}, \text{ and } \Delta H_{rxn})$

16.6 Reaction Mechanisms

- Sequences of molecular level steps (called elementary reactions) that sum up to the overall reaction
- **Elementary reactions (steps)** describe individual molecular events (collisions)

Example: $2O_3(g) \rightarrow 3O_2(g)$

- \rightarrow Proposed 2 step mechanism:

 - 1. $O_3 \rightarrow O_2 + O_2$ 2. $O_3 + O \rightarrow 2O_2$ $(\Rightarrow 2O_3 \rightarrow 3O_2 \text{ (overall)})$
 - Reaction intermediate formed in one step and used up in another (does not appear in the overall reaction) $\rightarrow 0$ is an intermediate

- \rightarrow Reaction intermediates are usually unstable species, but some are stable enough to be isolated
- **Molecularity** the number of reactant species involved in an elementary reaction (the number of colliding species)

Example: $2O_3(g) \rightarrow 3O_2(g)$

- $O_3 \rightarrow O_2 + O$ (1 reactant molecule \rightarrow Unimolecular)
- $O_3 + O \rightarrow 2O_2$ (2 reactant species \rightarrow Bimolecular)
 - \rightarrow **Termolecular** reactions are very rare very low probability for a three-particle collision with enough energy and proper orientation
 - \rightarrow Higher order molecularities are not known

	-			
• Rate laws for elementary reactions – can be derived from the reaction stoichiometry				
 The reaction orders are equal to the stoichiometric coefficients of the reactants 				
$iA + jB \rightarrow Products$				
$Rate = k[\mathbf{A}]^{i}[\mathbf{B}]^{j}$				
\rightarrow Applies only to elementary reactions!				
\Rightarrow Overall reaction order (i + j) = Molecularity				
Table 16.6 Rate Laws for General Elementary Steps				
Elementary Step	Molecularity	Rate Law		
$A \longrightarrow production$	t Unimolecular	Rate = $k[A]$		
$2A \longrightarrow produce$	et Bimolecular	Rate = $k[A]^2$		
$A + B \longrightarrow production$	et Bimolecular	Rate = k [A][B]		
$2A + B \longrightarrow production$	ct Termolecular	Rate = $k[A]^2[B]$		

Example: For the following three-step mechanism, determine the rate law and molecularity of each step, identify the intermediate and write the overall balanced equation. 1. $2\{N_2O_5 \rightarrow NO_2 + NO_3\}$ 2. $NO_2 + NO_3 \rightarrow NO_2 + O_2 + NO$ 3. $NO + NO_3 \rightarrow 2NO_2$ $\rightarrow 2\{...\} - \text{the 1st}$ equation is taken twice 1. $Rate_1 = k_1[N_2O_5] \rightarrow \text{unimolecular}$ 2. $Rate_2 = k_2[NO_2][NO_3] \rightarrow \text{bimolecular}$ 3. $Rate_3 = k_3[NO][NO_3] \rightarrow \text{bimolecular}$

• **Rate-determining step** (*RDS*) – the slowest step in a mechanism (limits the rate of the overall reaction)

Correlating Mechanisms and Rate Laws

- The validity of a mechanism can be tested by correlating it with the experimental rate law
 - The elementary steps must add up to the overall reaction
 - The elementary steps must be physically reasonable (uni- or bi-molecular)
 - The rate law of the *RDS* must agree with the experimental rate law

\triangleright	Mechanisms with a slow initial step				
Ex	Example: $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$				
Exp	Experimental rate law: $Rate = k[NO_2]^2$				
\rightarrow	Three proposed mechanisms:				
I.	A single step mechanism:				
	$NO_2 + CO \rightarrow NO + CO_2$ Rate = $k[NO_2][CO]$				
	\rightarrow Inconsistent with the exp. rate law \Rightarrow reject				
П.	1. $NO_2 + NO_2 \rightarrow NO_3 + NO$ [Slow, <i>RDS</i>]				
	2. $NO_3 + CO \rightarrow NO_2 + CO_2$ [Fast]				
(+) -	$\rightarrow NO_2 + CO \rightarrow NO + CO_2 \qquad (overall)$				
	$Rate = Rate_1 = k_1[NO_2][NO_2] = k_1[NO_2]^2$				
	\rightarrow Consistent with the exp. rate law ($k = k_1$)				

III.	1. $NO_2 + NO_2 \rightarrow N_2O_4$ [Slow, RDS]]
	2. $N_2O_4 + CO \rightarrow NO + NO_2 + CO_2$ [Fast]	
\oplus	$\rightarrow \overline{\mathrm{NO}_2 + \mathrm{CO} \rightarrow \mathrm{NO} + \mathrm{CO}_2} $ (overall)	
	$Rate = Rate_1 = k_1[NO_2][NO_2] = k_1[NO_2]^2$	
	\rightarrow Consistent with the exp. rate law ($k = k_I$)	
⇒	Both (II) and (III) are physically reasonable (involve bimolecular steps) and consistent with the experimental rate law \rightarrow more data are needed to give preference to one of them	
	Mechanisms <i>can never be proved</i> by kinetics data alone; we can only <i>reject</i> a mechanism or state that a mechanism is <i>consistent</i> with the kinetics data	

\triangleright	Mechanisms with a fast initial step				
	$\mathbf{A} \xrightarrow{k_1} \mathbf{Int} \qquad [Slow] \qquad [Fast]$				
	$Int \xrightarrow{k_2} B \qquad [Fast] \qquad [Slow]$		[Slow]		
⊕ →	$A \rightarrow B$	$Rate = k_1[A]$	<i>Rate</i> = k_2 [Int]		
\rightarrow	[Int] can not be in the rate law (intermediate) and must be expressed through the concentrations of the reactants (or products) in the overall reaction				
\rightarrow	If the first reaction is fast and reversible , it quickly reaches equilibrium and the rate of formation of the intermediate is equal to the rate of its consumption (steady state approximation)				
\rightarrow	The steady st	ate approximati	on allows the		

calculation of [Int]

Example: $2NO(g) + Br_2(g) \rightarrow 2NOBr(g)$		
Experimental rate law: $Rate = k[NO]^2[Br_2]$		
\rightarrow	Proposed mechanism:	
	1. NO + Br ₂ $\underset{k_1}{\overset{k_1}{\leftrightarrow}}$ NOBr ₂	[Fast, revers.]
	2. $\operatorname{NOBr}_2 + \operatorname{NO} \xrightarrow{k_2} 2\operatorname{NOBr}$	[Slow, <i>RDS</i>]
(+) -	$\rightarrow 2NO + Br_2 \rightarrow 2NOBr$	(overall)
$\Rightarrow Rate = Rate_2 = k_2[NO][NOBr_2]$		
→ NOBr ₂ is an intermediate and must be expressed through the reactants		
$ $ \rightarrow	The 1 st step reaches equilibrium so the rates of the forward (<i>Rate₁</i>) and reverse (<i>Rate₋₁</i>) reactions are equal	

 \rightarrow **Br**₂ is not consumed in the reaction

• Heterogeneous catalysis – the catalyst is in a