## Equilibrium: The Extent of Reactions

- Chemical equilibrium - studies the extent of reactions and the ways it can be altered
- Kinetics and equilibrium are two different aspects of chemical reactions (fast reactions may proceed to a great, lesser or a limited extent; same is true for slow reactions)


### 16.1 The Dynamic Nature of the Equilibrium State

- Chemical equilibrium - a state in which the concentrations of reactants and products no longer change



### 17.2 The Equilibrium Constant and the Reaction Quotient

## The Law of Mass-Action

- Equilibrium constant (K)
- For a general reaction at equilibrium:
$\boldsymbol{a} \mathrm{A}+\boldsymbol{b B} \leftrightarrow c \mathrm{C}+\boldsymbol{d} \mathrm{D}$

$$
\boldsymbol{K}_{c}=\frac{[\mathbf{C}]_{\mathrm{e}}^{c}[\mathbf{D}]_{\mathrm{e}}^{d}}{[\mathbf{A}]_{\mathrm{e}}^{a}[\mathbf{B}]_{\mathrm{e}}^{b}}
$$

$\rightarrow \boldsymbol{K}_{c}$ is the equilibrium constant in terms of concentration (depends on $\boldsymbol{T}$ and the specific reaction) $\rightarrow[\mathrm{A}]_{\mathrm{e}},[\mathrm{B}]_{\mathrm{e}},[\mathrm{C}]_{\mathrm{e}}$, and $[\mathrm{D}]_{\mathrm{e}}$ are the equilibrium concentrations of the reactants and products $\rightarrow \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, and $\boldsymbol{d}$ are the stoichiometric coefficients of the reactants and products
$>$ Equilibrium is not a stationary state or a unidirectional process
Example: $(\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C})$
If the rates of step 1 and step 2 are equal, [B] remains constant $\rightarrow$ not an equilibrium state
$>$ Equilibrium is a dynamic state achieved by the equalization of the forward and reverse rates of a reversible (bidirectional) process
Example: ( $\mathrm{A} \leftrightarrow \mathrm{B}$ )
If the rates of the forward and reverse reactions are equal, [A] and [B] remain constant $\rightarrow$ an equilibrium state

$$
\Rightarrow \text { At equilibrium } \rightarrow \text { Rate }_{\text {fvd }}=\text { Rate }_{\text {rev }}
$$

Example: $\mathbf{N}_{2} \mathrm{O}_{4}\left(\mathrm{~g}\right.$; colorless) $\leftrightarrow \mathbf{2 N O}_{\mathbf{2}}(\mathrm{g}$; brown)
$>$ The reaction can be started from pure $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}$; colorless) or from pure $\mathrm{NO}_{2}(\mathrm{~g}$; brown).
$>$ In both cases at equilibrium, the same light-brown color is reached (the same proportion of $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{NO}_{2}$ is produced)
$>$ The reaction has a single step mechanism (the forward and reverse reactions are elementary), so at equilibrium:

| Rate $_{1}=$ Rate $_{-1}$ | $\boldsymbol{k}_{1}\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]=\boldsymbol{k}_{-l}\left[\mathrm{NO}_{2}\right]^{2}$ |
| :---: | :---: |
| $k_{1}={ }^{\left[\mathrm{NO}_{2}\right]^{2}}$ | $\rightarrow \boldsymbol{K}$ is a constant which depends on $\boldsymbol{T}\left(\boldsymbol{K}=0.211\right.$ at $\left.100^{\circ} \mathrm{C}\right)$ |
| $\overline{k_{-1}}=K=\overline{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}$ | $\rightarrow \boldsymbol{K}$ determines the proportion of $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{NO}_{2}$ at equilibrium |

- Reaction quotient ( $\boldsymbol{Q}$ ) - has the same massaction expression as $\boldsymbol{K}$
-For a general reaction at any given time:

$$
a \mathbf{A}+b \mathbf{B} \leftrightarrow c \mathbf{C}+d \mathbf{D}
$$

$$
\boldsymbol{Q}_{c}=\frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}}
$$

$\rightarrow \boldsymbol{Q}_{c}$ is the reaction quotient in terms of concentration ( $\boldsymbol{Q}_{c}$ varies during the reaction)
$\rightarrow[\mathrm{A}],[\mathrm{B}],[\mathrm{C}]$, and $[\mathrm{D}]$ are the current concentrations of the reactants and products at any given time during the reaction
$\rightarrow$ When the current concentrations become equal to the equilibrium concentrations, $\boldsymbol{Q}_{c}=\boldsymbol{K}_{c}$
$\Rightarrow$ At equilibrium $\rightarrow Q=K$

Example: Write the mass action expression for the reaction: $\mathbf{2 H}_{\mathbf{2}}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g}) \leftrightarrow \mathbf{2 H}_{\mathbf{2}} \mathbf{O}(\mathrm{g})$ $\boldsymbol{Q}_{c}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \quad$ At equilibrium $\rightarrow \boldsymbol{Q}_{c}=K_{c}$

- The mass-action expressions for $\boldsymbol{Q}$ and $\boldsymbol{K}$ depend on the form of the chemical equation

$$
\begin{array}{lc}
\mathbf{A} \leftrightarrow \mathbf{B} \\
\boldsymbol{Q}_{c} \vec{c}=\frac{[\mathbf{B}]}{[\mathbf{A}]} & \text { or } \\
\mathbf{B} \leftrightarrow \mathbf{A} \\
\boldsymbol{Q}_{c}^{\leftarrow}=\frac{[\mathbf{A}]}{[\mathbf{B}]}=\frac{\mathbf{1}}{\boldsymbol{Q}_{c}^{\rightarrow}}
\end{array}
$$

$\Rightarrow Q($ or $K)$ of the reverse reaction is the reciprocal of $Q($ or $K)$ of the forward reaction

Example: For the gas phase reaction

$$
1 / 2 \mathbf{H}_{2}(\mathrm{~g})+1 / 2 \mathbf{C l}_{2}(\mathrm{~g}) \leftrightarrow \mathbf{H C l}(\mathrm{g})
$$

$\boldsymbol{K}_{\boldsymbol{c}}$ is $3.6 \times 10^{-5}$ at 1200 K . What is $\boldsymbol{K}_{\boldsymbol{c}}{ }^{\prime}$ for the reaction

$$
2 \mathrm{HCl}_{(\mathrm{g})} \leftrightarrow \mathbf{H}_{2}(\mathrm{~g})+\mathbf{C l}_{2}(\mathrm{~g}) ?
$$

$\rightarrow$ The given reaction has been reversed $\Rightarrow$ take the reciprocal of $\boldsymbol{K}_{\boldsymbol{c}}$
$\rightarrow$ The given reaction has been multiplied by $2 \Rightarrow$ take the square of $\boldsymbol{K}_{\boldsymbol{c}}$

$$
\Rightarrow K_{c}^{\prime}=\left(1 / K_{c}\right)^{2}=\left(1 / 3.6 \times 10^{-5}\right)^{2}=7.7 \times 10^{8}
$$

## Connection between Kinetics and Equilibrium

$>$ For an elementary reaction:

$$
a \mathbf{A}+b \mathbf{B} \leftrightarrow c \mathbf{C}+d \mathbf{D}
$$

Rate $_{\text {fwd }}=\boldsymbol{k}_{\text {fwd }}[\mathbf{A}]^{a}[\mathbf{B}]^{b}$ and Rate $_{\text {rev }}=\boldsymbol{k}_{\text {rev }}[\mathbf{C}]^{c}[\mathbf{D}]^{d}$ $>$ At equilibrium:

$$
\operatorname{Rate}_{\text {fwd }}=\text { Rate }_{\text {rev }} \rightarrow \boldsymbol{k}_{\text {fwd }}[\mathbf{A}]^{a}[\mathbf{B}]^{b}=\boldsymbol{k}_{\text {rev }}[\mathbf{C}]^{c}[\mathbf{D}]^{d}
$$

$$
\Rightarrow \frac{\boldsymbol{k}_{f v d}}{\boldsymbol{k}_{\text {rev }}}=\frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}}=\boldsymbol{Q}_{c}=\boldsymbol{K}_{c} \quad \Rightarrow \quad \boldsymbol{K}_{c}=\frac{\boldsymbol{k}_{\text {fvd }}}{\boldsymbol{k}_{r e v}}
$$

$\rightarrow \boldsymbol{K}_{c}$ is large when the forward reaction is fast and the reverse is slow $\left(\boldsymbol{k}_{\text {fivd }} \gg \boldsymbol{k}_{\text {rev }}\right)$


1. $\mathrm{A}+\mathrm{B} \leftrightarrow \mathrm{C} \quad \boldsymbol{Q}_{1}=[\mathrm{C}] /[\mathrm{A}][\mathrm{B}]$
2. $\mathrm{C} \leftrightarrow \mathrm{D} \quad \boldsymbol{Q}_{2}=[\mathrm{D}] /[\mathrm{C}]$
$\mathrm{A}+\mathrm{B} \leftrightarrow \mathrm{D} \quad \boldsymbol{Q}_{c}=[\mathrm{D}] /[\mathrm{A}][\mathrm{B}]$
$\boldsymbol{Q}_{1} \times \boldsymbol{Q}_{2}=\frac{[\mathrm{C} \mid}{[\mathrm{A}][\mathrm{B}]} \times \frac{[\mathrm{D}]}{[\mathrm{C}]}=\frac{[\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}=\boldsymbol{Q}_{c}$
$\Rightarrow Q($ or $K)$ of the sum of two or more reactions is the product of their $Q s$ (or Ks)
$\Rightarrow$ Multiplying a reaction by a factor, $n$, raises $Q$ (or K) to $\boldsymbol{n}^{\text {th }}$ power
b

Example: Given the following two reactions and their $\boldsymbol{K}_{c}$ s at a certain temperature:
$\mathbf{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrow \mathbf{2} \mathrm{NO}_{\mathbf{2}}(\mathrm{g})$
$K_{c 1}=2.2 \times 10^{6}$
$\mathbf{2 N O} \mathbf{2}(\mathrm{g}) \leftrightarrow \mathbf{2 N O}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g})$
$K_{c 2}=1.6 \times 10^{-10}$
Calculate $\boldsymbol{K}_{\boldsymbol{c}}$ at this temperature for the reaction

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

$\rightarrow$ The sum of the given reactions yields the desired reaction $\Rightarrow$ multiply the $\boldsymbol{K}_{c}$
$\Rightarrow K_{c}=K_{c 1} \times K_{c 2}=\left(2.2 \times 10^{6}\right) \times\left(1.6 \times 10^{-10}\right)$
$\Rightarrow K_{c}=3.5 \times 10^{-4}$
$>$ For an overall reaction (sum of elementary reactions), $\boldsymbol{K}_{c}$ is the product of the $\boldsymbol{K}_{c} \mathrm{~s}$ for the individual elementary steps:

$$
\boldsymbol{K}_{c}=\boldsymbol{K}_{c}^{\prime} \times \boldsymbol{K}_{c}^{\prime \prime} \times \ldots=\frac{\boldsymbol{k}_{\text {fwd }}^{\prime}}{\boldsymbol{k}_{\text {rev }}^{\prime}} \times \frac{\boldsymbol{k}_{\text {fwd }}^{\prime \prime}}{\boldsymbol{k}_{\text {rev }}^{\prime \prime}} \times \ldots
$$

$\rightarrow$ The magnitude of $\boldsymbol{K}_{\boldsymbol{c}}$ is an indication of how far a reaction proceeds toward products at a given $\boldsymbol{T}$
$\rightarrow$ Large $\boldsymbol{K}_{c}\left(\boldsymbol{K}_{c} \gg 1\right)$ - products dominate
$\rightarrow$ Small $\boldsymbol{K}_{c}\left(\boldsymbol{K}_{c} \ll 1\right)-$ reactants dominate
$\rightarrow$ Intermediate $\boldsymbol{K}_{\boldsymbol{c}}\left(\boldsymbol{K}_{\boldsymbol{c}} \sim 1\right)$ - significant amounts
of both reactants and products are present at equilibrium

## Form of $Q$ and $K$ for Heterogeneous Equilibria

- Heterogeneous equilibria - reactants and products in different phases
Example: $\mathbf{2 H}_{\mathbf{2}} \mathbf{O}(\mathrm{I}) \leftrightarrow \mathbf{2 H}_{\mathbf{2}}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g})$

$$
Q_{c}^{\prime}=\frac{\left[\mathrm{H}_{2}(g)\right]^{2}\left[\mathrm{O}_{2}(g)\right]}{\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]^{2}}
$$

$>$ The concentration of $\mathrm{H}_{2} \mathrm{O}$ in pure liquid water is constant at a given temperature
$\left[\mathrm{H}_{2} \mathrm{O}\right]=\mathrm{mol} / \mathrm{V}=(\mathrm{m} / \mathrm{MW}) / \mathrm{V}=d / \mathrm{MW}$
$>$ At $25^{\circ} \mathrm{C}$ :
$\left[\mathrm{H}_{2} \mathrm{O}\right]=\left(1.00 \times 10^{3} \mathrm{~g} / \mathrm{L}\right) /(18.0 \mathrm{~g} / \mathrm{mol})=55.6 \mathrm{~mol} / \mathrm{L}$

### 17.3 Equilibria Involving Gases

- Gases are quantified easier through partial pressures rather than molarities
For a gaseous reactant or product, the molarity, $\boldsymbol{C}_{i}$, and partial pressure, $\boldsymbol{P}_{\boldsymbol{i}}$, are related by the ideal gas law

$$
P_{i} V=n_{i} R T \quad P_{i} / R T=n_{i} / V=C_{i}
$$

$>$ For a general reaction

$$
\begin{array}{lr}
\begin{array}{l}
\text { For a general reaction } \\
\boldsymbol{a} \mathbf{A}(\mathrm{g})+\boldsymbol{b B}(\mathrm{g}) \leftrightarrow \boldsymbol{C}(\mathrm{g})
\end{array} & \boldsymbol{Q}_{c}=\frac{\left[\mathbf{C} C^{c}\right.}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}} \\
\boldsymbol{Q}_{c}=\frac{\left(\boldsymbol{P}_{C} / \boldsymbol{R T}\right)^{c}}{\left(\boldsymbol{P}_{A} / \boldsymbol{R T}\right)^{a}\left(\boldsymbol{P}_{B} / \boldsymbol{R T}\right)^{b}}=\frac{\boldsymbol{P}_{C}^{c}}{\boldsymbol{P}_{A}{ }^{c} \boldsymbol{P}_{B}^{b}} \times \frac{\mathbf{1}}{(\boldsymbol{R T})^{c-(a+b)}}
\end{array}
$$

Example: For the reaction

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$\boldsymbol{K}_{\boldsymbol{c}}=2.6 \times 10^{-6}$ at 1000 K . What is the partial pressure of $\mathrm{CO}_{2}$ in the reaction mixture at this temperature?
$\rightarrow$ Calculate $\boldsymbol{K}_{\boldsymbol{p}}$
$\rightarrow \Delta n=1-0=1$
$\rightarrow \boldsymbol{K}_{p}=\boldsymbol{K}_{c}(\boldsymbol{R T})^{\Delta n}=2.6 \times 10^{-6}(0.0821 \times 1000)=2.1 \times 10^{-4}$
$\rightarrow K_{p}=$ Pco $_{2} \quad \Rightarrow \quad$ Pco $_{2}=2.1 \times 10^{-4} \mathrm{~atm}$
$>$ Use $\boldsymbol{K}_{c}\left(\right.$ or $\left.\boldsymbol{Q}_{c}\right)$ if molarities are given, $\boldsymbol{K}_{p}\left(\right.$ or $\left.\boldsymbol{Q}_{p}\right)$ if partial pressures are given, or $\boldsymbol{K}$ ( or $\boldsymbol{Q}$ ) for mixed expressions
$>$ Omit the subscript " $e$ " from all expressions for $\boldsymbol{K}$

$$
\begin{gathered}
\boldsymbol{Q}_{c}^{\prime} \times\left[\mathrm{H}_{2} \mathrm{O}(l)\right]^{2}=\left[\mathrm{H}_{2}(\mathrm{~g})\right]^{2}\left[\mathrm{O}_{2}(\mathrm{~g})\right]=\boldsymbol{Q}_{c}^{\prime} \times(55.6)^{2}=\boldsymbol{Q}_{c} \\
\Rightarrow \boldsymbol{Q}_{c}=\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]
\end{gathered}
$$

$\Rightarrow$ The molarities of pure liquids and solids remain constant during the reaction and can be eliminated from the expressions for $\boldsymbol{Q}$ and $\boldsymbol{K}$
Example: $\mathbf{A g C l}(\mathrm{s}) \leftrightarrow \mathbf{A g}^{+}(\mathrm{aq})+\mathbf{C l}^{-}(\mathrm{aq})$
$\rightarrow \mathbf{A g C l}(\mathbf{s})$ is a pure solid

$$
\Rightarrow \boldsymbol{Q}_{c}=\left[\mathbf{A g}^{+}\right]\left[\mathrm{Cl}^{-}\right]
$$

Example: $\mathrm{S}(\mathrm{s})+\mathrm{O}_{\mathbf{2}}(\mathrm{g}) \leftrightarrow \mathrm{SO}_{\mathbf{2}}(\mathrm{g})$
$\rightarrow \mathbf{S}(\mathrm{s})$ is a pure solid

$$
\Rightarrow \boldsymbol{Q}_{c}=\left[\mathbf{S O}_{2}\right] /\left[\mathbf{O}_{2}\right]
$$

$$
\begin{array}{ll}
Q_{c}=\frac{P_{C}{ }^{c}}{P_{A}{ }^{a} P_{B}^{b}} \times \frac{1}{(R T)^{\Delta n}} & \Delta n=c-(a+b) \\
Q_{c}=Q_{p} \times \frac{1}{(R T)^{\Delta n}} & Q_{p}=\frac{P_{C}^{c}}{P_{A}^{a} P_{B}^{b}} \\
Q_{p}=Q_{c}(R T)^{\Delta n} & K_{p}=K_{c}(R T)^{\Delta n}
\end{array}
$$

$\rightarrow \boldsymbol{Q}_{p}$ and $\boldsymbol{K}_{p}$ are the reaction quotient and equilibrium constant in terms of partial pressures ( $\boldsymbol{P}$ is in atm, $\boldsymbol{R}=0.08206 \mathrm{~L} . \mathrm{atm} / \mathrm{mol} . \mathrm{K}, \boldsymbol{T}$ is in K)
$\rightarrow \Delta n$ is the difference between the moles of gaseous products and reactants

$$
\Delta \boldsymbol{n}=\boldsymbol{n}(\mathrm{g}, \text { products })-\boldsymbol{n}(\mathrm{g}, \text { reactants })
$$

## Example:

$$
\mathbf{H}_{2} \mathbf{S}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathbf{H S}^{-}(\mathrm{aq})
$$

$$
K=\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]\left[\mathbf{H S}^{-}\right] / \boldsymbol{P}_{\boldsymbol{H}_{2} S}
$$

Example: Calculate $\boldsymbol{K}_{c}$ and $\boldsymbol{K}_{\boldsymbol{p}}$ for the reaction

$$
2 \mathrm{BrCl}(\mathrm{~g}) \leftrightarrow \mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

if at 500 K , the equilibrium concentrations of BrCl , $\mathrm{Br}_{2}$ and $\mathrm{Cl}_{2}$ are $0.131,3.51$ and 0.156 M , respectively.

$$
\begin{gathered}
\boldsymbol{K}_{c}=\frac{\left[\mathrm{Br}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{BrCl}^{2}\right.}=\frac{\mathbf{3 . 5 1} \times \mathbf{0 . 1 5 6}}{\mathbf{0 . 1 3 1}}=\mathbf{3 1 . 9} \\
\rightarrow \Delta n=\mathbf{1}+\mathbf{1}-\mathbf{2}=\mathbf{0} \Rightarrow \boldsymbol{K}_{p}=\boldsymbol{K}_{c}(\boldsymbol{R T})^{0}=31.9 \times 1=31.9
\end{gathered}
$$

### 17.4 The Direction of Reaction

- The direction of a reaction can be predicted by comparing the current value of $\boldsymbol{Q}$ to the value of $\boldsymbol{K}$ at the temperature of the reaction
- As the reaction approaches equilibrium, $\boldsymbol{Q}$ approaches $K$
- If $\boldsymbol{Q}<\boldsymbol{K}$, the concentration of reactants is too high, while that of products is too low $\Rightarrow$ the reaction proceeds forward
- If $\boldsymbol{Q}>\boldsymbol{K}$, the concentration of reactants is too low, while that of products is too high $\Rightarrow$ the reaction proceeds in reverse
- If $\boldsymbol{Q}=\boldsymbol{K}$, the reaction is at equilibrium

Example: For the reaction

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

$\boldsymbol{K}_{\boldsymbol{p}}=0.98$ at 298 K . Predict the direction of the reaction at 298 K , if the partial pressures of $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{NO}_{2}$ are 2.4 and 1.2 atm , respectively.
$Q_{p}=\frac{P_{\mathrm{NO}_{2}}{ }^{2}}{P_{\mathrm{N}_{2} \mathrm{O}_{4}}}=\frac{1.2^{2}}{2.4}=0.60 \quad K_{p}=0.98$
$\rightarrow \boldsymbol{Q}_{\boldsymbol{p}}<\boldsymbol{K}_{\boldsymbol{p}} \Rightarrow$ The reaction proceeds forward to produce more $\mathrm{NO}_{2}$


### 17.5 Solving Equilibrium Problems

- Calculation of $\boldsymbol{K}_{\boldsymbol{c}}$ ( or $\boldsymbol{K}_{p}$ ) values from measured equilibrium concentrations (or pressures)
- Calculation of equilibrium concentrations (or pressures) from $\boldsymbol{K}_{c}$ (or $\boldsymbol{K}_{p}$ ) values
- Equilibrium tables ("ice" tables) - give the initial, $\boldsymbol{i}$, change of, $\boldsymbol{c}$, and equilibrium, $\boldsymbol{e}$, concentrations of reactants and products -For a general reaction: $A+2 B \leftrightarrow C$ $\rightarrow[\mathbf{A}]_{i},[B]_{i},[C]_{i}-$ initial concentrations $\rightarrow[\mathbf{A}]_{e},[\mathbf{B}]_{e},[\mathbf{C}]_{e}-$ equilibrium concentrations $\rightarrow \Delta[\mathbf{A}], \Delta[\mathbf{B}], \Delta[\mathbf{C}],-$ change in the concentrations $\rightarrow[A]_{e}=[A]_{i}+\Delta[A] \rightarrow$ same is valid for B and C

$$
\begin{aligned}
& \rightarrow \Delta[C]=+x \quad A+2 B \leftrightarrow C \\
& \rightarrow \Delta[A]=-\Delta[C] \times(1 \mathrm{~mol} \mathrm{~A} / 1 \mathrm{~mol} C)=-\Delta[C]=-x \\
& \rightarrow \Delta[B]=-\Delta[C] \times(2 \mathrm{~mol} \mathrm{~B} / 1 \mathrm{~mol} \mathrm{C})=-2 \Delta[C]=-2 x
\end{aligned}
$$

| $\begin{aligned} & \ddot{+} \\ & + \\ & \text { II } \\ & 0 \end{aligned}$ | [] |  | + 2B $\leftrightarrow \mathrm{C}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $i$ | $[A]_{i}$ | $[B]_{i}$ | $\left[C_{i}\right.$ |
|  | $c$ | -x | -2x | +x |
|  | $e$ | $[A]_{i}-x$ | $[B]_{i}-2 x$ | $[C]_{i}+x$ |

$$
\Rightarrow K_{c}=\frac{[\mathrm{C}]}{[\mathrm{A}][\mathrm{B}]^{2}}=\frac{\left([\mathrm{C}]_{\mathrm{i}}+x\right)}{\left([\mathrm{A}]_{\mathrm{i}}-x\right)\left([\mathrm{B}]_{\mathrm{i}}-2 x\right)^{2}}
$$

$\rightarrow$ The equation can be used to calculate $\boldsymbol{K}_{\boldsymbol{c}}$ if $\boldsymbol{x}$ is known or to calculate $\boldsymbol{x}$ if $\boldsymbol{K}_{\boldsymbol{c}}$ is known

Using Equilibrium Quantities to Calculate $K$

- If all equilibrium concentrations are given, substitute in the mass action expression to find $\boldsymbol{K}$
- If the initial concentrations and one equilibrium concentration are given, use an ice table to find $\boldsymbol{K}$
Example: $1.00 \mathbf{~ m o l}$ of $\mathrm{NH}_{3}$ is sealed in a $\mathbf{1 . 0 0} \mathbf{L}$ container and heated to 500 K . Calculate $\boldsymbol{K}_{c}$ for $2 \mathrm{NH}_{3}(\mathrm{~g}) \leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$, if at equilibrium the concentration of $\mathrm{NH}_{3}$ is $\mathbf{0 . 5 8} \mathbf{M}$.
$\rightarrow\left[\mathrm{NH}_{3}\right]_{\mathrm{i}}=1.00 \mathrm{~mol} / 1.00 \mathrm{~L}=1.00 \mathrm{M}$
$\rightarrow\left[\mathrm{N}_{2}\right]_{\mathrm{i}}=\left[\mathrm{H}_{2}\right]_{\mathrm{i}}=0$
$\rightarrow\left[\mathrm{NH}_{3}\right]_{\mathrm{e}}=0.58 \mathrm{M}$

$$
\begin{aligned}
& \rightarrow\left[\mathrm{NH}_{3}\right]_{\mathrm{e}}=1.00-2 \boldsymbol{x}=0.58 \\
& \Rightarrow \boldsymbol{x}=(1.00-0.58) / 2=0.21 \\
& \rightarrow\left[\mathrm{~N}_{2}\right]_{\mathrm{e}}=\boldsymbol{x}=0.21 \mathrm{M} \\
& \rightarrow\left[\mathrm{H}_{2}\right]_{\mathrm{e}}=3 \boldsymbol{x}=0.63 \mathrm{M} \\
& \Rightarrow \quad K_{c}=\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}{\left[\mathrm{NH}_{3}\right]^{2}}=\frac{[0.21][0.63]^{3}}{[0.58]^{2}}=0.16
\end{aligned}
$$



| > Using the quadratic formula |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Example: $0.50 \mathbf{~ m o l ~ H I}$ and $\mathbf{0 . 3 0} \mathbf{~ m o l ~} \mathrm{H}_{2}$ are sealed in a 2.0 L reactor and heated to $700^{\circ} \mathrm{C}$. Calculate the equilibrium concentrations of all species if at $700^{\circ} \mathrm{C}, \boldsymbol{K}_{c}=\mathbf{0 . 0 2 2}$ for $2 \mathrm{HI}(\mathrm{g}) \leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$. |  |  |  |  |  |
| $\begin{aligned} & \rightarrow[\mathrm{HI}]_{\mathrm{i}}=0.50 \mathrm{~mol} / 2.0 \mathrm{~L}=0.25 \mathrm{M} \\ & \rightarrow\left[\mathrm{H}_{2}\right]_{\mathrm{i}}=0.30 \mathrm{~mol} / 2.0 \mathrm{~L}=0.15 \mathrm{M} \\ & \rightarrow\left[\mathrm{I}_{2}\right]_{\mathrm{i}}=0 \end{aligned}$ |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  | [] | $2 \mathrm{HI}(\mathrm{g}) \leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$ |  |  | $K_{c}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}$ |
| - <br>  <br> + <br> II <br> 0 | $i$ | 0.25 | 0.15 | 0 |  |
|  | c | -2x | +x | +x |  |
|  | $e$ | 0.25-2x | $0.15+x$ | $x$ |  |

Using $K$ to Calculate Equilibrium Quantities

- If $\boldsymbol{K}$ and all but one equilibrium concentrations are given, substitute in the mass action expression for $\boldsymbol{K}$ to find the unknown concentration
- If the initial concentrations and $\boldsymbol{K}$ are given, use an ice table to find the equilibrium concentrations
Example: 0.50 mol of HI is sealed in a $\mathbf{2 . 0} \mathbf{L}$ reactor and heated to $700^{\circ} \mathrm{C}$. Calculate the equilibrium concentrations of all species if at $700^{\circ} \mathrm{C}$, $\boldsymbol{K}_{\boldsymbol{c}}=\mathbf{0 . 0 2 2}$ for $2 \mathrm{HI}(\mathrm{g}) \leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$.
$\rightarrow[\mathrm{HI}]_{\mathrm{i}}=0.50 \mathrm{~mol} / 2.0 \mathrm{~L}=0.25 \mathrm{M}$
$\rightarrow\left[\mathrm{I}_{2}\right]_{\mathrm{i}}=\left[\mathrm{H}_{2}\right]_{\mathrm{i}}=0$
ding the quadratic formula
Example: $0.50 \mathbf{m o l ~ H I}$ and $\mathbf{0 . 3 0} \mathbf{~ m o l ~} \mathrm{H}_{2}$ are sealed in a 2.0 L reactor and heated to $700^{\circ} \mathrm{C}$. Calculate the equilibrium concentrations of all species if at $700^{\circ} \mathrm{C}, \boldsymbol{K}_{\boldsymbol{c}}=\mathbf{0 . 0 2 2}$ for $2 \mathrm{HI}(\mathrm{g}) \leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$.
$\rightarrow[\mathrm{HI}]_{\mathrm{i}}=0.50 \mathrm{~mol} / 2.0 \mathrm{~L}=0.25 \mathrm{M}$
$\rightarrow\left[\mathrm{H}_{2}\right]_{\mathrm{i}}=0.30 \mathrm{~mol} / 2.0 \mathrm{~L}=0.15 \mathrm{M}$
$\rightarrow\left[\mathrm{I}_{2}\right]_{\mathrm{i}}=0$

| $\frac{(0.15+x) x}{(0.25-2 x)^{2}}=0.022 \Rightarrow \frac{0.15 x+x^{2}}{0.25^{2}-2 \times 0.25 \times 2 x+4 x^{2}}=0.022$ |
| :---: |
| $\begin{aligned} & 0.15 x+x^{2}=0.022 \times 0.25^{2}-0.022 \times 4 \times 0.25 x+0.022 \times 4 x^{2} \\ & 0.15 x+x^{2}=0.00138-0.022 x+0.088 x^{2} \\ & 0.912 x^{2}+0.172 x-0.00138=0 \end{aligned}$ |
| $\begin{aligned} & x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \rightarrow \text { The }(-) \text { solution is meaningless } \\ & x=\frac{-0.172+\sqrt{0.172^{2}-4 \times 0.912 \times(-0.00138)}}{2 \times 0.912}=\mathbf{0 . 0 0 7 6 8} \end{aligned}$ |
| $\begin{aligned} & \Rightarrow\left[\mathrm{I}_{2}\right]_{\mathrm{e}}=\boldsymbol{x}=\mathbf{0 . 0 0 7 7} \mathbf{~ M} \\ & \Rightarrow\left[\mathrm{H}_{2}\right]_{\mathrm{e}}=0.15+\boldsymbol{x}=0.15+0.00768=\mathbf{0 . 1 6 \mathbf { M }} \\ & \Rightarrow[\mathrm{HI}]_{\mathrm{e}}=0.25-2 \boldsymbol{x}=0.25-2 \times 0.00768=\mathbf{0 . 2 3} \mathbf{~ M} \end{aligned}$ |


| $>$ Using simplifying assumptions |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Example: A mixture of $\mathbf{0 . 0 6 0} \mathrm{M}_{2}$ and $\mathbf{0 . 0 4 0} \mathbf{M}$ |  |  |  |  |  |
| $\mathrm{H}_{2}$ is heated to a temperature where $\boldsymbol{K}_{c}=\mathbf{0 . 0 0 1 0}$ for $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$. Calculate the equilibrium concentration of $\mathrm{NH}_{3}$. |  |  |  |  |  |
|  |  |  |  |  |  |
| $\rightarrow\left[\mathrm{N}_{2}\right]_{\mathrm{i}}=0.060 \mathrm{M}$ |  |  |  |  |  |
| $\rightarrow\left[\mathrm{H}_{2}\right]_{\mathrm{i}}=0.040 \mathrm{M}$ |  |  |  |  |  |
| $\rightarrow\left[\mathrm{NH}_{3}\right]_{\mathrm{i}}=0$ |  |  |  |  |  |
|  | [] | $\mathrm{N}_{2}(\mathrm{~g})$ | $3 \mathrm{H}_{2}(\mathrm{~g})$ | NH | $K=\left[\mathrm{NH}_{3}\right]^{2}$ |
| $\cdots$ | $i$ | 0.060 | 0.040 | 0 |  |
| $\bigcirc$ | c | -x | $-3 x$ | $+2 x$ | $\left.\mathrm{N}_{2} \mathrm{lH}_{2}\right]$ |
| 0 | $e$ | 0.060-x | 0.040-3x | $2 x$ | $=0.0010$ |


$\Rightarrow$ We must solve the equation without assumptions

## $>$ Successive approximation

$\rightarrow$ Using the same formula as in the previous problem without neglecting $x$ and $3 x$ leads to:

$$
x_{n+1}=\sqrt{\frac{10 . \times\left(0.060-x_{n}\right)\left(0.040-3 x_{n}\right)^{3}}{4}}
$$

$\rightarrow$ This formula allows the calculation of the $(\mathbf{n}+1)^{\text {st }}$ approximation for $\boldsymbol{x}$ from the $\mathbf{n}^{\text {th }}$ approximation $\rightarrow$ For $\mathbf{n}=\mathbf{0}$, assume $\boldsymbol{x}_{\boldsymbol{0}}=\mathbf{0}(\boldsymbol{x}$ is expected to be small) $\rightarrow$ For $\mathbf{n}=\mathbf{1}$ (1 $1^{\text {st }}$ iteration)

$$
x_{1}=\sqrt{\frac{10 . \times(0.060-0)(0.040-3 \times 0)^{3}}{4}}=0.0031
$$

## Equilibrium Calculations for Reactions with Unknown Direction

Example: $\mathbf{0 . 5 0} \mathbf{~ m o l ~ H}_{2}, \mathbf{0 . 5 0} \mathbf{~ m o l ~} \mathrm{I}_{2}$ and $\mathbf{0 . 5 0} \mathbf{~ m o l}$ HI are mixed in a 1.0 L container and heated to a temperature where $\boldsymbol{K}_{\boldsymbol{c}}=\mathbf{0 . 4 5}$ for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HI}(\mathrm{g})$. Calculate $[\mathrm{HI}]$ at equilibrium.
$\rightarrow\left[\mathrm{H}_{2}\right]_{\mathrm{i}}=\left[\mathrm{I}_{2}\right]_{\mathrm{i}}=[\mathrm{HI}]_{\mathrm{i}}=0.50 \mathrm{~mol} / 1.0 \mathrm{~L}=\mathbf{0 . 5 0} \mathbf{~ M}$
$\rightarrow$ Since all reactants and products are present initially, the direction of the reaction must be determined first $\Rightarrow \boldsymbol{Q}_{c}$ must be calculated and compared to $\boldsymbol{K}_{\boldsymbol{c}}$

$$
Q_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{0.50^{2}}{0.50 \times 0.50}=1>K_{c}
$$

$>$ Simplifying assumptions are not always justified
Example: A mixture of $\mathbf{0 . 0 6 0} \mathrm{M}_{2}$ and $\mathbf{0 . 0 4 0} \mathbf{M}$ $\mathrm{H}_{2}$ is heated to a temperature where $\boldsymbol{K}_{\boldsymbol{c}}=\mathbf{1 0}$. for $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$. Calculate the equilibrium concentration of $\mathrm{NH}_{3}$.
$\rightarrow$ Using the assumption from the previous problem leads to:
$\frac{4 x^{2}}{(0.060)(0.040)^{3}}=10 . \Rightarrow x=\sqrt{\frac{10 . \times 0.060 \times 0.040^{3}}{4}}$

$$
x=0.0031
$$

$\rightarrow$ The assumption is not justified since $\boldsymbol{x}$ and $3 \boldsymbol{x}$ are more than $5 \%$ of 0.060 and 0.040

$$
(3 \times 0.0031 / 0.040) \times 100 \%=23 \% \text { error }
$$

| $\rightarrow \boldsymbol{Q}_{c}>\boldsymbol{K}_{\boldsymbol{c}} \Rightarrow$ the reaction proceeds to the left |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1]$ | $\mathrm{H}_{2}(\mathrm{~g})$ | $\mathrm{I}_{2}(\mathrm{~g})$ | $2 \mathrm{HI}(\mathrm{g})$ |  |
| $\begin{array}{\|l} \hline \\ + \\ 0 \\ 11 \\ 0 \end{array}$ |  | 0.50 | 0.50 | 0.50 |  |
|  |  | + $x$ | $+x$ | -2x | ][12] |
|  |  | $0.50+x$ | $0.50+x$ | 0.50-2 | 0.45 |
| $(0.50-2 x)^{2}$ |  |  | $0.45=$ | $\sqrt{\frac{(0.50}{(0.5+x}}$ | $\frac{2 x)^{2}}{x)^{2}}=\sqrt{0.45}$ |
| $\frac{(0.50-2 x)}{(0.5+x)}=\sqrt{0.45} \Rightarrow(0.50-2 x)=\sqrt{0.45} \times(0.5+x)$ |  |  |  |  |  |
| $0.50-0.67 \times 0.50=2 x+0.67 x \Rightarrow x=\frac{0.165}{2+0.67}=0.062$ |  |  |  |  |  |
| $\Rightarrow[\mathrm{HI}]_{\mathrm{e}}=0.50-2 \boldsymbol{x}=0.50-2 \times 0.062=\mathbf{0 . 3 8} \mathbf{~ M}$ |  |  |  |  |  |

### 17.6 Changing Reaction Conditions and the Equilibrium State

- Le Chatelier's principle - when a system at equilibrium is disturbed, the equilibrium "shifts" in a direction that minimizes the effect of the disturbance
- A chemical system can be disturbed by changing the values of $\boldsymbol{Q}$ or $\boldsymbol{K}$ so that temporarily $\boldsymbol{Q} \neq \boldsymbol{K}$
- Changing concentrations of reactants or products ( $\boldsymbol{Q}$ changes)
- Changing pressure for gas reactions ( $\boldsymbol{Q}$ changes)
- Changing temperature ( $\boldsymbol{K}$ changes)

Example: Given $\mathbf{N}_{\mathbf{2}}(\mathrm{g})+\mathbf{3} \mathbf{H}_{\mathbf{2}}(\mathrm{g}) \leftrightarrow \mathbf{2} \mathbf{N H}_{\mathbf{3}}(\mathrm{g})$. How can the yield of $\mathrm{NH}_{3}$ be increased by manipulating the concentrations of reactants and products?
$\rightarrow$ Add more $\mathrm{N}_{2}$ and $\mathrm{H}_{2}$
$\rightarrow$ Remove some $\mathrm{NH}_{3}$

## Changing Pressure or Volume

- Affects the concentrations of gaseous reactants and products (changes $\boldsymbol{Q}$ )
$>$ Changing the partial pressure of a gaseous reactant or product
$\rightarrow$ The concentration of the reactant or product changes and the equilibrium shifts accordingly as described before


## Changing Concentration

- If the concentration increases, the system reacts to consume some of it; If the concentration decreases, the system reacts to produce some of it
$>$ Adding reactants or removing products
$\rightarrow$ The equilibrium shifts toward the products in order to consume the added reactants or generate the removed products
$\rightarrow \boldsymbol{Q}$ decreases $\rightarrow \boldsymbol{Q}<\boldsymbol{K} \rightarrow$ reaction shifts forward
$>$ Adding products or removing reactants
$\rightarrow$ The equilibrium shifts toward the reactants in order to consume the added products or generate the removed reactants
$\rightarrow \boldsymbol{Q}$ increases $\rightarrow \boldsymbol{Q}>\boldsymbol{K} \rightarrow$ reaction shifts in reverse
$>$ Changing the total pressure of the reaction mixture by changing its volume
$>$ Compression ( $\uparrow \boldsymbol{P}$ by $\downarrow \boldsymbol{V}$ )
$\rightarrow$ The equilibrium shifts in a direction that consumes gases and relieves the pressure
$\Rightarrow$ The equilibrium shifts toward the side with fewer moles of gas
Example: $\mathbf{A}(\mathrm{g})+\mathbf{B}(\mathrm{g}) \leftrightarrow \mathbf{C}(\mathrm{g})$
2 mol gas $\quad \leftrightarrow 1 \mathrm{~mol}$ gas
$Q_{p}=\frac{P_{C}}{P_{A} P_{B}}=\frac{\left(n_{\mathrm{C}} R T / V\right)}{\left(n_{\mathrm{A}} R T / V\right)\left(n_{\mathrm{B}} R T / V\right)}=\frac{n_{\mathrm{C}}}{n_{\mathrm{A}} n_{\mathrm{B}}} \times \frac{V}{R T}$
$\Rightarrow$ As $\boldsymbol{V}$ is reduced, $\boldsymbol{Q}$ decreases $(\boldsymbol{Q}<\boldsymbol{K})$ and the reaction shifts forward
$>$ Expansion ( $\downarrow P$ by $\uparrow V$ )
$\rightarrow$ The equilibrium shifts in a direction that produces more gases and increases the pressure
$\Rightarrow$ The equilibrium shifts toward the side with more moles of gas
$>$ Compression and expansion do not affect reactions in which the number of moles of gases is the same on both sides of the equation
$>$ Changing the total pressure of the reaction mixture by adding an inert gas
$\rightarrow$ The equilibrium is not affected because the partial pressures and concentrations of the components do not change

Example: Given $\mathbf{N}_{\mathbf{2}}(\mathbf{g})+\mathbf{3} \mathbf{H}_{\mathbf{2}}(\mathrm{g}) \leftrightarrow \mathbf{2 N H}_{\mathbf{3}}(\mathbf{g})$. How can the yield of $\mathrm{NH}_{3}$ be increased by changing the pressure (volume) of the reaction mixture?

$$
4 \text { mol gas } \quad \leftrightarrow 2 \text { mol gas }
$$

$\Rightarrow$ Increasing the pressure (compression) shifts the equilibrium to the right toward less moles of gas (4 mol $\rightarrow 2 \mathrm{~mol}$ ) and improves the yield of $\mathrm{NH}_{3}$

Example: Given $\mathbf{C l}_{2}(\mathrm{~g})+\mathbf{H}_{\mathbf{2}}(\mathrm{g}) \leftrightarrow \mathbf{2 H C l}(\mathrm{g})$. What is the effect of increasing the volume of the reaction container?

$$
2 \mathrm{~mol} \text { gas } \quad \leftrightarrow 2 \mathrm{~mol} \text { gas }
$$

$\Rightarrow$ Increasing the volume (expansion) has no effect on the reaction since the number of moles of gas is the same on both sides of the equation

## Changing Temperature

- Affects the value of $\boldsymbol{K}$
$>$ Increasing $\boldsymbol{T}$ by adding heat to the reaction mixture favors the endothermic reaction which consumes the added heat
$>$ Decreasing $\boldsymbol{T}$ by removing heat from the reaction mixture favors the exothermic reaction which produces heat
Example: $\mathbf{A}+\mathbf{B} \leftrightarrow \mathbf{C}+\mathbf{D}+$ heat $\quad \Delta H<0$
$\rightarrow$ The forward reaction is exothermic, while the reverse reaction is endothermic
$\Rightarrow$ Increasing $\boldsymbol{T}$ favors the endothermic reaction so the reaction shifts in reverse
$>$ Changing $\boldsymbol{T}$ changes the value of $\boldsymbol{K}$
$>$ Increasing $\boldsymbol{T}$ increases $\boldsymbol{K}$ for endothermic reactions $>$ Increasing $\boldsymbol{T}$ decreases $\boldsymbol{K}$ for exothermic reactions
$\rightarrow$ Increasing $\boldsymbol{T}$ increases more the rate constant of the endothermic reaction (which has higher activation energy) $\rightarrow \boldsymbol{K}=\boldsymbol{k}_{\text {fwd }} \boldsymbol{k}_{\text {rev }} \Rightarrow$ If the forward reaction is endothermic, $\boldsymbol{K}$ increases

Example: Given $\mathbf{N}_{\mathbf{2}}(\mathbf{g})+\mathbf{3} \mathbf{H}_{\mathbf{2}}(\mathrm{g}) \leftrightarrow \mathbf{2 N H}_{\mathbf{3}}(\mathrm{g})$ with $\Delta \boldsymbol{H}^{o}=-92 \mathrm{~kJ} / \mathrm{mol}$. How can the yield of $\mathrm{NH}_{3}$ be increased by manipulating the temperature?
$\rightarrow$ The forward reaction is exothermic
$\Rightarrow$ Lowering the temperature facilitates the forward reaction and improves the yield of $\mathrm{NH}_{3}$
$>$ The $\boldsymbol{T}$ dependence of $\boldsymbol{K}$ is given by the van't Hoff equation

$$
\ln \frac{K_{2}}{K_{1}}=-\frac{\Delta H_{r x n}^{o}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

$\rightarrow$ The equation allows the calculation of $\boldsymbol{K}$ at one temperature knowing the value of $\boldsymbol{K}$ at another temperature and $\Delta \boldsymbol{H}^{\boldsymbol{o}}$ of the reaction
Example: Given $\mathbf{N}_{\mathbf{2}}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g}) \leftrightarrow \mathbf{2 N O}(\mathrm{g})$ with $\Delta \boldsymbol{H}^{o}=181 \mathrm{~kJ} / \mathrm{mol}$. If $\boldsymbol{K}_{\boldsymbol{p}}=4.3 \times 10^{-31}$ at 298 K , what is $\boldsymbol{K}_{\boldsymbol{p}}$ at 3000 K ?

$$
\begin{array}{ll}
\boldsymbol{T}_{1}=298 \mathrm{~K} & \boldsymbol{K}_{p 1}=4.3 \times 10^{-31} \\
\boldsymbol{T}_{2}=3000 \mathrm{~K} & \boldsymbol{K}_{p 2}=? \\
\hline
\end{array}
$$

## The Effect of Catalysts

$>$ Catalysts do not affect the equilibrium state and the value of $\boldsymbol{K}$ because they speed up equally both the forward and reverse reactions
$>$ Catalysts only shorten the time needed to reach equilibrium

Example: Given $\mathbf{N}_{\mathbf{2}}(\mathbf{g})+\mathbf{3 H}_{\mathbf{2}}(\mathrm{g}) \leftrightarrow \mathbf{2 N H}_{\mathbf{3}}(\mathrm{g})$ with $\Delta \boldsymbol{H}^{0}=-92 \mathrm{~kJ} / \mathrm{mol}$. What are the optimum conditions for the synthesis of $\mathrm{NH}_{3}$ ?
$\rightarrow$ Pump in more $\mathrm{N}_{2}$ and $\mathrm{H}_{2}$ and remove $\mathrm{NH}_{3}\left(\mathrm{NH}_{3}\right.$ can be removed by cooling $\rightarrow$ condensation)
$\rightarrow$ Increase $\boldsymbol{P}$ and decrease $\boldsymbol{T}$
$\rightarrow$ At lower $\boldsymbol{T}$, a catalyst is needed to speed up the process

| Disturbance | Net Direction of Reaction | Effect on Value of $\boldsymbol{K}$ |
| :---: | :---: | :---: |
| Concentration |  |  |
| Increase [reactant] | Toward formation of product | None |
| Decrease [reactant] | Toward formation of reactant | None |
| Increase [product] | Toward formation of reactant | None |
| Decrease [product] | Toward formation of product | None |
| Pressure |  |  |
| Increase $P$ (decrease $V$ ) | Toward formation of fewer moles of gas | None |
| $\begin{aligned} & \text { Decrease } P \\ & \quad \text { (increase } V \text { ) } \end{aligned}$ | Toward formation of more moles of gas | None |
| Increase $P$ (add inert gas, no change in $V$ ) | None; concentrations unchanged | None |
| Temperature |  |  |
| Increase $T$ | Toward absorption of heat | Increases if $\Delta H_{\mathrm{rxn}}^{0}>0$ <br> Decreases if $\Delta H_{\mathrm{rxn}}^{0}<0$ |
| Decrease $T$ | Toward release of heat | Increases if $\Delta H_{\mathrm{rxn}}^{0}<0$ <br> Decreases if $\Delta H_{\mathrm{rxn}}^{0}>0$ |
| Catalyst added | None; forward and reverse equilibrium attained sooner; rates increase equally | None |

