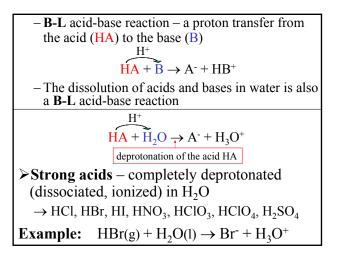
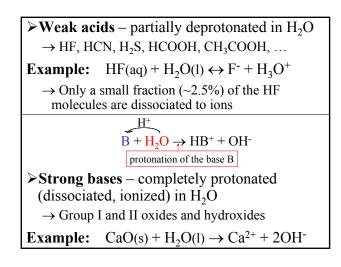
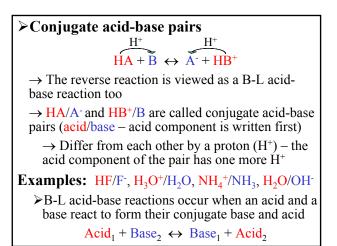
Acid-Base Equilibria

- Acids sharp, sour taste; Bases soapy, bitter taste
- Neutralization (proton transfer) reactions
 - acid + base \rightarrow salt + water (or other products)
- Proton (H⁺) strongly hydrated in water $H(H_2O)_n^+$
- Hydronium ion H_3O^+

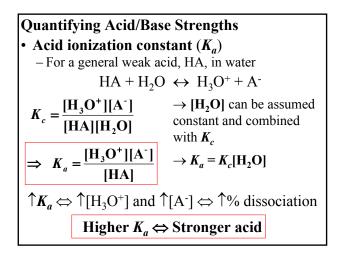

18.1 Acid-Base Definitions

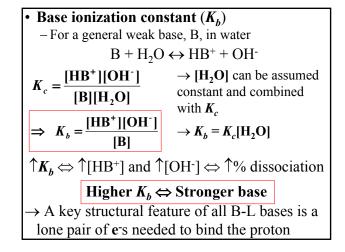

- Arrhenius definition defines acids and bases in terms of their behavior in water
 - -Acids contain H and release H⁺ in water
 - -Bases contain OH and release OH- in water

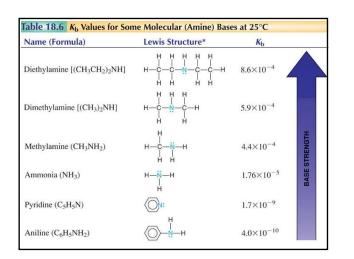
 Arrhenius acid-base reaction – a combination of the H⁺ from the acid with the OH⁻ from the base

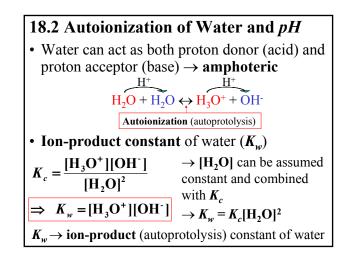

 $H^+ + OH^- \rightarrow H_2O$

- The Arrhenius definition has severe limitations
 Limited to water solutions
 - \bullet Some bases do not contain OH (NH_3, amines, Na_2S, Na_2CO_3, \ldots)
- **Brønsted-Lowry definition** defines acids and bases in relation to the H⁺ ion (**proton**)
 - Acids proton donors (must contain H)
 - Bases proton acceptors (must contain a lone pair to bind the H⁺)
 - All Arrhenius bases are also B-L bases, but not all B-L bases are Arrhenius bases




➤ Weak Bases – partially protonated in H₂O → NH₃, amines (RNH₂, R₂NH, R₃N), ...
Example: NH₃(aq) + H₂O(l) ↔ NH₄⁺ + OH⁻
→ Only a small fraction (~0.5%) of the NH₃ molecules are dissociated to ions
> H₃O⁺ is a strong acid in water
H₃O⁺ + H₂O → H₂O + H₃O⁺
> OH⁻ is a strong base in water $H^+_{0H^-} + H_2O \to H_2O + OH^-$




Acid	+	Conjugate Pai	r	Base	+	Acid
		L	Co	onjugate Pair		
HF	+	H_2O	\neq	F ⁻	+	H_3O^+
HCOOH	+	\overline{CN}^{-}	\Rightarrow	$HCOO^{-}$	+	HCN
NH_4^+	+	CO_{3}^{2-}	=	NH ₃	+	HCO ₃
$H_2PO_4^-$	+	OH^{-}	_	HPO_4^{2-}	+	H_2O

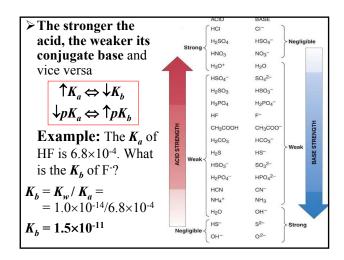
Name (Formula)	Lewis Structure*	Ka	
Chlorous acid (HClO ₂)	н—ё—ё=ё	1.12×10^{-2}	
Nitrous acid (HNO ₂)	H-Ö-N=Ö	7.1×10^{-4}	
Hydrofluoric acid (HF)	H—Ë:	6.8×10^{-4}	
Formic acid (HCOOH)	:0: Ш н—с—ö,—н н :о:	1.8×10^{-4}	STRENGTH
Acetic acid (CH ₃ COOH)	н—с–с–ё–н	1.8×10^{-5}	ACID STR
Hypochlorous acid (HClO)	н—ё—ё:	2.9×10 ⁻⁸	A
Hypobromous acid (HBrO)	H—Ö—Ër:	2.3×10^{-9}	
Hydrocyanic acid (HCN)	H—C≡N:	6.2×10^{-10}	
Hypoiodous acid (HIO)	H—Ö—Ï:	2.3×10^{-11}	

>At 25°C, $K_w = 1.0 \times 10^{-14}$					
> In pure water \rightarrow [H ₃ O ⁺] = [OH ⁻] = x					
$\rightarrow K_w = x^2 \rightarrow x = \sqrt{K_w} = \sqrt{1.0 \times 10^{-14}} = 1.0 \times 10^{-7}$					
$\Rightarrow [\mathrm{H}_{3}\mathrm{O}^{+}] = [\mathrm{OH}^{-}] = 1.0 \times 10^{-7} \mathrm{M}$					
➤ In water solutions \rightarrow [H ₃ O ⁺] and [OH ⁻] are inversely proportional to each other					
$\rightarrow K_{w} = [\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{O}\mathrm{H}^{-}] \implies \uparrow [\mathrm{H}_{3}\mathrm{O}^{+}] \Leftrightarrow \downarrow [\mathrm{O}\mathrm{H}^{-}]$					
\Rightarrow H ₃ O ⁺ and OH ⁻ are present in different proportions in both acid and base solutions					
Neutral solutions \rightarrow [H ₃ O ⁺] = [OH ⁻]					
Acidic solution \rightarrow [H ₃ O ⁺] > [OH ⁻]					
Basic solutions \rightarrow [H ₃ O ⁺] < [OH ⁻]					

The pH Scale
• The pH scale is a logarithmic scale
$pH = -\log[H_3O^+]$
$\rightarrow \log[\mathrm{H}_{3}\mathrm{O}^{+}] = -pH \implies [\mathrm{H}_{3}\mathrm{O}^{+}] = 10^{-pH}$
$\uparrow [\mathrm{H}_{3}\mathrm{O}^{+}] \Leftrightarrow \downarrow pH$
\rightarrow If [H ₃ O ⁺] = [OH ⁻] = 1×10 ⁻⁷ M (neutral solution)
$\rightarrow pH = -\log(1 \times 10^{-7}) \rightarrow \text{neutral solution} \rightarrow pH = 7$
\rightarrow If [H ₃ O ⁺] > 1×10 ⁻⁷ M \rightarrow acidic solution $\rightarrow pH < 7$
\rightarrow If [H ₃ O ⁺] < 1×10 ⁻⁷ M \rightarrow basic solution $\rightarrow pH > 7$
Examples: $[H_3O^+] = 1 \rightarrow pH = -\log 1 = 0$
$[H_3O^+] = 10^{-14} \rightarrow pH = -\log 10^{-14} = 14$

• The <i>p</i> -notation $\rightarrow pX = -\log X$				
$pOH = -\log[OH^{-}]$				
$\rightarrow \log[OH^-] = -pOH \implies [OH^-] = 10^{-pOH}$				
$pK_{w} = -\log K_{w}$				
\rightarrow [H ₃ O ⁺][OH ⁻] = $K_{w} \leftarrow$ (take a -log)				
$\rightarrow -\log[H_3O^+] + (-\log[OH^-]) = -\log K_w$				
$\Rightarrow pH + pOH = pK_w$				
\rightarrow At 25°C, $K_w = 1.0 \times 10^{-14} \rightarrow pK_w = 14.00$				
$\Rightarrow pH + pOH = 14.00$				
\rightarrow If $pH = 7 \rightarrow pOH = 7 \rightarrow$ neutral solution				
\rightarrow Acidic (\downarrow pH, \uparrow pOH); Basic (\uparrow pH, \downarrow pOH)				

		[H ₃ O+]	pН	[OH-]	рОН	
1	2	1.0 x 10 ⁻¹⁵	15.00	1.0 x 10 ¹	-1.00	
0		1.0 x 10 ⁻¹⁴	14.00	1.0 x 10 ⁰	0.00	
BASIC		1.0 x 10 ⁻¹³	13.00	1.0 x 10 ⁻¹	1.00	
8	BASIC	1.0 x 10 ⁻¹²	12.00	1.0 x 10 ⁻²	2.00	
MORE		1.0 x 10 ⁻¹¹	11.00	1.0 x 10 ⁻³	3.00	
ž		1.0 x 10 ⁻¹⁰	10.00	1.0 x 10 ⁻⁴	4.00	
		1.0 x 10 ⁻⁹	9.00	1.0 x 10 ⁻⁵	5.00	
		1.0 x 10 ⁻⁸	8.00	1.0 x 10 ⁻⁶	6.00	
	NEUTRA	L 1.0 x 10 ^{−7}	7.00	1.0 x 10 ⁻⁷	7.00	
		1.0 x 10 ⁻⁶	6.00	1.0 x 10 ⁻⁸	8.00	
		1.0 x 10 ⁻⁵	5.00	1.0 x 10 ⁻⁹	9.00	
MORE ACIDIC		1.0 x 10 ⁻⁴	4.00	1.0 x 10 ⁻¹⁰	10.00	
AC	ACIDIC	1.0 x 10 ⁻³	3.00	1.0 x 10 ⁻¹¹	11.00	
끮	ACIDIC	1.0 x 10 ⁻²	2.00	1.0 x 10 ⁻¹²	12.00	
M		1.0 x 10 ⁻¹	1.00	1.0 x 10 ⁻¹³	13.00	
		1.0 x 10 ⁰	0.00	1.0×10^{-14}	14.00	
		1.0 x 10 ¹	-1.00	1.0 x 10 ⁻¹⁵	15.00	


Example: A household ammonia solution has a pH of **11.92**. What is the pOH and the concentration of OH⁻ in it?

- $\rightarrow pOH = 14.00 pH = 14.00 11.92 = 2.08$
- \rightarrow [OH⁻] = 10^{-pOH} = 10^{-2.08} = 8.3×10⁻³

Note: The # of sig. figs in $[OH^-]$ (or $[H_3O^+]$) equals the number of decimal places in *pOH* (or *pH*)

- Measuring *pH* in the laboratory
 - Indicators have different colors at different pH (*pH* paper, indicator solutions)
 - -*pH* meters measure the *pH* by measuring the potential of a *pH* sensitive electrode immersed in the solution (more accurate)

<i>K_a</i> and <i>K_b</i> of a Conjugate Acid-Base Pair				
• In a solution of the weak acid HA , both HA and its conjugate base, A ⁻ , react with water				
$HA + H_2O \leftrightarrow A^- + H_3O^+$	K_a (of HA)			
$A^- + H_2O \leftrightarrow HA + OH^-$	K_b (of A ⁻)			
$\oplus \rightarrow \overline{\mathrm{H}_{2}\mathrm{O} + \mathrm{H}_{2}\mathrm{O}} \leftrightarrow \overline{\mathrm{H}_{3}\mathrm{O}^{+} + \mathrm{OH}^{-}}$	$K_w = K_a \times K_b$			
$K_a \times K_b = \frac{[\mathbf{H}_3\mathbf{O}^+][\mathbf{A}^-]}{[\mathbf{H}\mathbf{A}]} \times \frac{[\mathbf{H}\mathbf{A}][\mathbf{O}\mathbf{H}^-]}{[\mathbf{A}^-]} = [\mathbf{I}_{a}$	$\mathbf{H}_{3}\mathbf{O}^{+}][\mathbf{O}\mathbf{H}^{-}] = K_{w}$			
\Rightarrow For a conjugate acid-base pair \rightarrow	$K_a \times K_b = K_w$			
$-\log \mathbf{K}_a + (-\log \mathbf{K}_b) = -\log \mathbf{K}_b$	K_w			
$\Rightarrow pK_a + pK_b = pK_w \rightarrow \text{At 25°C}, pK$	$f_a + pK_b = 14.00$			

	18.3 Relative Acid-Base Strength and the Net Direction of Reaction					
extent	• An acid-base reaction proceeds to a greater extent from the stronger acid and stronger base towards the weaker acid and weaker base					
stronger a	HA + B ↔ A ⁻ + HB ⁺ stronger acid + stronger base → weaker base + weaker acid →The reaction is shifted towards A ⁻ and HB ⁺ ($K_c > 1$)					
Example		is sinned	lowan	us A a		$\mathbf{D} \left(\mathbf{n}_{c} > 1 \right)$
$\frac{\text{HF}}{\text{HF}} + \frac{\text{NH}_3}{\text{stronger acid}} \leftrightarrow \frac{\text{F}^- + \frac{\text{NH}_4}{\text{stronger base}} + \frac{\text{NH}_4}{\text{weaker base}} + \frac{\text{NH}_4}{\text{weaker acid}}$						
		H ₂ O aker base				H_3O^+ stronger acid

Exa	mple:
	where $K_a(\text{HF}) = 6.8 \times 10^{-4}$ and $K_a(\text{HCN}) = 6.2 \times 10^{-10}$, ermine the preferred direction of the reaction $\text{F}^- + \text{HCN} \leftrightarrow \text{HF} + \text{CN}^-$
$\rightarrow Co$	ompare the strengths of the acids on both sides
\rightarrow	HF is stronger than HCN (HF has higher K_a value)
$\rightarrow Co$	ompare the strengths of the bases on both sides
C	Since HF is a stronger acid than HCN, the conjugate base of HF, F ⁻ , is a weaker base than the conjugate base of HCN, CN ⁻
\rightarrow	CN^{-} is stronger than F ⁻ (CN^{-} has higher K_{b} value)
\Rightarrow F ⁻	+ HCN \leftrightarrow HF + CN ⁻ is shifted to the left ($K_c < 1$)

18.4 Solving Problems Involving Weak Acid Equilibria

- In a water solution of the weak acid, HA, there are two sources of H₃O⁺:
- 1. $HA + H_2O \leftrightarrow H_3O^+ + A^-$ (dissociation of HA)

2. $H_2O + H_2O \leftrightarrow H_3O^+ + OH^-$ (autoionization)

 \rightarrow [H₃O⁺]₁ = [A⁻] and [H₃O⁺]₂ = [OH⁻]

$$\rightarrow$$
 [H₃O⁺] = [H₃O⁺]₁ + [H₃O⁺]₂ = [A⁻] + [OH⁻]

→If HA is not very dilute or very weak, the autoionization can be neglected and [OH⁻] << [A⁻]

 \Rightarrow [H₃O⁺] \approx [A⁻] = x

• In water solution, the weak acid HA exists in two forms \rightarrow undissociated (HA) and dissociated (A⁻) HA + H₂O \leftrightarrow H₃O⁺ + A⁻ \rightarrow C_{HA} - total concentration of HA \rightarrow C_{HA} = [HA] + [A⁻] \Rightarrow [HA] = C_{HA} - [A⁻] = C_{HA} - x \rightarrow So [H₃O⁺] = x, [A⁻] = x, [HA] = C_{HA} - x $K_a = \frac{[H_3O^+][A^-]}{[HA]} = \frac{x^2}{C_{HA} - x}$

≻Using equilibrium tables						
\rightarrow If he autoionization of water is neglected						
	[]	$HA + H_2O \leftarrow$	→ H ₃ O ⁺	+ A ⁻	$K_a = \frac{[\mathbf{H}_3\mathbf{O}^+][\mathbf{A}^-]}{[\mathbf{H}\mathbf{A}]}$	
<i>i</i> +	i	C _{HA}	0	0	$\mathbf{A}_{a}^{\mathbf{A}_{a}}$ [HA]	
<i>c</i> =	c	- <i>x</i>	+x	+x	$K_a = \frac{x^2}{C_{HA} - x}$	
= е	e	C_{HA} - x	x	x	$\int_{a}^{a} C_{HA} - x$	
	→ The quadratic equation can be solved for x in order to determine [H ₃ O ⁺] and <i>pH</i>					
→ If x is less than 5% of C_{HA} , x can be neglected in the denominator (5% rule) → works if C_{HA} is relatively large and K_a is small ($C_{HA}/K_a > 400$)						
	K _a	$= x^2/C_{HA}$ y	$x = (K_a)$	$(C_{HA})^{\frac{1}{2}}$	= [H ₃ O ⁺]	

Fir	Finding <i>K_a</i> Given Concentrations or <i>pH</i>						
	Example: If the <i>pH</i> of a 0.20 M HCN solution is						
4	.95, calculate t	the K_a of	HCN.				
\rightarrow	$[H_3O^+] = 10^{-pH}$	$1 = 10^{-4.95}$	$5 = 1.1 \times$	$10^{-5} = x$			
	$C_{HCN} = 0.20$						
[]	$HCN + H_2O$	$\leftrightarrow H_3O^+$	+ CN-	$K_a = \frac{[\mathrm{H}_3\mathrm{O}^+][\mathrm{CN}^-]}{[\mathrm{HCN}]}$			
i	0.20	0	0	HCN]			
с	- <i>x</i>	+x	+x	$K = \frac{x^2}{x^2} \approx \frac{x^2}{x^2}$			
e	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
⇒I	$\Rightarrow K_a = x^2 / C_{HCN} = (1.1 \times 10^{-5})^2 / 0.20 = 6.3 \times 10^{-10}$						
[No	te: $C_{HA}/K_a = 0.2$	0/6.3×10	$10 = 3.2 \times$	$10^8 >> 400$]			

Finding Concentrations and <i>pH</i> Given K_a Example: What is the <i>pH</i> of a 0.30 M HF solution? ($K_a = 6.8 \times 10^{-4}$ for HF)						
[]	$HF + H_2O \leftarrow$	\rightarrow H ₃ O ⁺	+ F-	$K_a = \frac{[\mathrm{H}_3\mathrm{O}^+][\mathrm{F}^-]}{[\mathrm{H}\mathrm{F}]}$		
i						
c	- <i>x</i>	+x	+x	$K_a = \frac{x^2}{C_{HF} - x} \approx \frac{x^2}{C_{HF}}$		
e	0.30 - <i>x</i>	x	x	${}^{"}C_{HF} - x C_{HF}$		
$\rightarrow 0$	$C_{HF} = 0.30$ -	\rightarrow assu	x < x < x	5% of 0.30		
$\Rightarrow \mathbf{x} = (K_a C_{HF})^{\frac{1}{2}} = (6.8 \times 10^{-4} \times 0.30)^{\frac{1}{2}} = 1.4 \times 10^{-2} = [\text{H}_3\text{O}^+]$						
$\Rightarrow pH = -\log[\mathrm{H}_{3}\mathrm{O}^{+}] = -\log(1.4 \times 10^{-2}) = \boxed{1.85}$						
	[Check assumption: $(1.4 \times 10^{-2}/0.30) \times 100 = 4.8\% < 5\%$] [Note: $C_{HF}/K_a = 0.30/6.8 \times 10^{-4} = 441 > 400$]					

Extent of Acid Dissociation
• Percent dissociation

$$HA + H_2O \iff H_3O^+ + A^-$$

 $\Rightarrow C_{HA} = [HA] + [A^-] \implies [A^-] \approx [H_3O^+]$
 $\Rightarrow [A^-] = x$ (dissociated form of the acid)
% dissociated $= \frac{[A^-]}{C_{HA}} \times 100 = \frac{[H_3O^+]}{C_{HA}} \times 100 = \frac{x}{C_{HA}} \times 100$
> For a given acid, % dissociated decreases with
increasing the total concentration of the acid, C_{HA}
 $\uparrow C_{HA} \iff \downarrow \%$ dissociation

Example: Calculate the % *dissociation* for two HF solutions with concentrations 0.30 and 3.0 M. $(K_a = 6.8 \times 10^{-4} \text{ for HF})$ \rightarrow For the 0.30 M HF from the previous example: $x = (K_a C_{HF})^{V_2} = (6.8 \times 10^{-4} \times 0.30)^{V_2} = 1.4 \times 10^{-2} = [\text{H}_3\text{O}^+]$ % *dissociated* = $(1.4 \times 10^{-2}/0.30) \times 100 = 4.8\%$ \rightarrow For the 3.0 M HF similarly: $x = (K_a C_{HF})^{V_2} = (6.8 \times 10^{-4} \times 3.0)^{V_2} = 4.5 \times 10^{-2} = [\text{H}_3\text{O}^+]$ % *dissociated* = $(4.5 \times 10^{-2}/3.0) \times 100 = 1.5\%$ \Rightarrow Increasing the concentration from 0.30 to 3.0 M decreases the % dissociated from 4.8 to 1.5\%

The Behavior of Polyprotic Acids					
• Polyprotic Acids – can donate more than one					
proton (H_2SO_4 , H_3PO_4 ,)					
– For a general diprotic acid, H ₂ A					
$H_2A + H_2O \leftrightarrow H_3O^+ + HA^- \qquad K_{al}$					
$\mathbf{HA}^{-} + \mathbf{H}_{2}\mathbf{O} \iff \mathbf{H}_{3}\mathbf{O}^{+} + \mathbf{A}^{2} \qquad \mathbf{K}_{a2}$					
$K_{a1} = \frac{[H_3O^+][HA^-]}{[H_2A]}$ $K_{a2} = \frac{[H_3O^+][A^{2-}]}{[HA^-]}$					
Almost all polyprotic acids (except H ₂ SO ₄) are weak in all stages of dissociation and become weaker with each successive dissociation					
$K_{a1} > K_{a2} > K_{a3} \ldots$					

Name (Formula)	Lewis Structure*	K _{a1}	K _{a2}	K _{a3}	
Oxalic acid (H ₂ C ₂ O ₄)					^
Phosphorous acid (H ₃ PO ₃)	:0: Ш Н—Ё—Р—Ё—Н Н	3×10 ⁻²	1.7×10 ⁻⁷		
Sulfurous acid (H ₂ SO ₃)					
Phosphoric acid (H ₃ PO ₄)	:0: H—Ö_P_Ö_H ! !О: - Н	7.2×10 ⁻³	6.3×10 ⁻⁸	4.2×10 ⁻¹³	H
Arsenic acid (H ₃ AsO ₄)	:0: H—Ӧ—Аs—Ӧ—Н !О_—Н	6×10 ⁻³	1.1×10 ⁻⁷	3×10 ⁻¹²	ACID STRENGTH
Carbonic acid (H ₂ CO ₃)	ю: ∥ н—ё,—с—ё,—н	4.5×10^{-7}	4.7×10 ⁻¹¹		
Hydrosulfuric acid (H ₂ S)	н—зі—н	9×10 ⁻⁸	1×10 ⁻¹⁷		

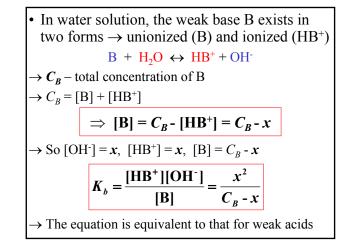
- The second and third dissociations are less pronounced because it's harder to remove an H⁺ from negatively charged ions
- Equilibrium calculations are greatly simplified by neglecting subsequent dissociations since they contribute negligible amounts of H₃O⁺

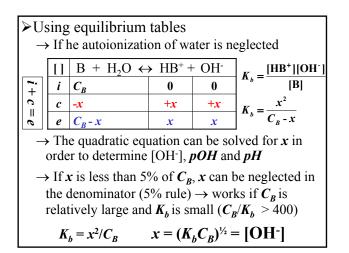
Example: Calculate the *pH* and the concentrations of all ionized forms for a **0.10** M H₃PO₄ solution. $(K_{a1} = 7.2 \times 10^{-3}, K_{a2} = 6.3 \times 10^{-8}, K_{a3} = 4.2 \times 10^{-13})$

$H_3PO_4 + H_2O \leftrightarrow H_3O^+ + H_2PO_4^-$	K _{a1}
$H_2PO_4^- + H_2O \iff H_3O^+ + HPO_4^{-2-}$	K_{a2}
$HPO_4^{2-} + H_2O \leftrightarrow H_3O^+ + PO_4^{3-}$	K_{a3}

\rightarrow Consider only the first dissociation to get the <i>pH</i>						
$\frac{H_{3}PO_{4} + H_{2}O \leftrightarrow H_{3}O^{+} + H_{2}PO_{4}^{-}}{i \ 0.10 \ 0 \ 0}K_{a1} = \frac{[H_{3}O^{+}][H_{2}PO_{4}^{-}]}{[H_{3}PO_{4}]}$						
<i>i</i> 0.10	0	0	$\mathbf{H}_{a1} = \mathbf{H}_{3} \mathbf{PO}_{4}$			
<i>c</i> - <i>x</i>	+x	+x	$-K_{a1} = \frac{x^2}{0.10 - x} \approx \frac{x^2}{0.10}$			
<i>e</i> 0.10 - <i>x</i>	x	x	$n_{a1} = 0.10 - x = 0.10$			
\rightarrow Assume <i>x</i> < 5% of 0.10						
$\Rightarrow \mathbf{x} = (K_{al} \times 0.10)$	$\frac{1}{2} = (7.2 \times 10^{12})$	10 ⁻³ ×0.1	$0)^{\frac{1}{2}} = 2.7 \times 10^{-2}$			
\rightarrow Check assumption: $(2.7 \times 10^{-2}/0.10) \times 100 = 27\% > 5\%$						
⇒The assumption is not justified – must solve the quadratic equation						
$x^2 = K_{al}(0.10 - x)$ $x^2 + K_{al}x - 0.10K_{al} = 0$						
$x^2 + 7.2 \times 10^{-3} x - 7.2 \times 10^{-4} = 0$						

$x = \frac{-7.2 \times 10^{-3} + \sqrt{(7.2 \times 10^{-3})^2}}{2}$	$\frac{+4 \times 7.2 \times 10^{-4}}{} = 2.3 \times 10^{-2}$			
$\Rightarrow x = [H_3O^+] = [H_2PO_4^-] = 2.3 \times 10^{-2} M$				
$\Rightarrow pH = -\log[\mathrm{H_3O^+}] = -\log(2.3 \times 10^{-2}) = 1.63$				
→ To calculate the concentrations of the other species, use the $[H_3O^+]$ and $[H_2PO_4^-]$ from the 1 st ionization				
$K_{a2} = \frac{[\mathbf{H}_{3}\mathbf{O}^{+}][\mathbf{HPO}_{4}^{2-}]}{[\mathbf{H}_{2}\mathbf{PO}_{4}^{-}]}$	$K_{a3} = \frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{PO}_{4}^{3-}]}{[\mathrm{HPO}_{4}^{2-}]}$			
$K_{a2} = \frac{[H_{3}O^{+}][HPO_{4}^{2-}]}{[H_{2}PO_{4}^{-}]}$ $[HPO_{4}^{2-}] = \frac{K_{a2}[H_{2}PO_{4}^{-}]}{[H_{3}O^{+}]} = \frac{6.3 \times 10^{-3}}{10^{-3}}$ $[PO_{4}^{3-}] = \frac{K_{a3}[HPO_{4}^{2-}]}{[H_{3}O^{+}]} = \frac{4.2 \times 10^{-3}}{2}$	$\frac{10^{-8} \times 2.3 \times 10^{-2}}{2.3 \times 10^{-2}} = 6.3 \times 10^{-8}$			


18.5 Solving Problems Involving Weak Base Equilibria


- In a water solution of the weak base, B, there are two sources of OH⁻:
- 1. $B + H_2O \leftrightarrow HB^+ + OH^-$ (ionization of B)
- 2. $H_2O + H_2O \leftrightarrow H_3O^+ + OH^-$ (autoionization)
- \rightarrow [OH⁻]₁ = [HB⁺] and [OH⁻]₂ = [H₃O⁺]

$$\rightarrow$$
[OH⁻] = [OH⁻]₁ + [OH⁻]₂ = [HB⁺] + [H₃O⁺]

 \rightarrow If B is not very dilute or very weak, the autoionization can be neglected and [H₃O⁺]<<[HB⁺]

 \Rightarrow [OH⁻] \approx [HB⁺] = x

Finding <i>pH</i> Given <i>K</i> _b						
Example: What is the <i>pH</i> of a 0.10 M NH ₃ solution? $(K_b = 1.8 \times 10^{-5} \text{ for NH}_3)$						
[]	$[1] NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-$ $K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$					
i	0.10	0	0	[NH ₃]		
с	- <i>x</i>	+x	+x	$K_b = \frac{x^2}{C_{NH_3} - x} \approx \frac{x^2}{C_{NH_3}}$		
e	0.10 - <i>x</i>	x	x	$\int C_{NH_3} - x C_{NH_3}$		
$\rightarrow 0$	$C_{NH3} = 0.10$	→ assu	x < x < x	5% of 0.10		
$\Rightarrow x$	$\Rightarrow \mathbf{x} = (K_b C_{NH3})^{\frac{1}{2}} = (1.8 \times 10^{-5} \times 0.10)^{\frac{1}{2}} = 1.3 \times 10^{-3} = [\text{OH}^-]$					
$\Rightarrow \boldsymbol{pOH} = -\log[OH^{-}] = -\log(1.3 \times 10^{-3}) = 2.87$						
$\Rightarrow pH = 14.00 - pOH = 14.00 - 2.87 = 11.13$						
[Che	ck assumption: (1.3×10-3/	0.10)×10	0 = 1.3% < 5%]		

Extent of Base Ionization					
 Percent ionization 					
$B + H_2O \leftrightarrow HB^+ + OH^-$					
$\rightarrow C_B = [B] + [HB^+] \rightarrow [HB^+] \approx [OH^-]$					
\rightarrow [HB ⁺] = x (ionized form of the base)					
$\% ionized = \frac{[\mathrm{HB}^+]}{C_B} \times 100 = \frac{[\mathrm{OH}^-]}{C_B} \times 100 = \frac{x}{C_B} \times 100$					
For a given base, % <i>ionized</i> decreases with increasing the total concentration of the base, C_B					
$\uparrow C_B \Leftrightarrow \downarrow \%$ dissociation					

Example: Calculate the % <i>ionization</i> for two NH_3 solutions with concentrations 0.10 and 1.0 M. ($K_b = 1.8 \times 10^{-5}$ for NH_3)
\rightarrow For the 0.10 M N H ₃ from the previous example:
$\mathbf{x} = (K_b C_{NH3})^{\frac{1}{2}} = (1.8 \times 10^{-5} \times 0.10)^{\frac{1}{2}} = 1.3 \times 10^{-3} = [OH^-]$
% <i>ionized</i> = (1.3×10 ⁻³ /0.10)×100 = 1.3%
\rightarrow For the 1.0 M N H ₃ similarly:
$\mathbf{x} = (K_b C_{NH3})^{\frac{1}{2}} = (1.8 \times 10^{-5} \times 1.0)^{\frac{1}{2}} = 4.2 \times 10^{-3} = [OH^-]$
% <i>ionized</i> = $(4.2 \times 10^{-3}/1.0) \times 100 = 0.42\%$
⇒ Increasing the concentration from 0.10 to 1.0 M decreases the % <i>ionized</i> from 1.3 to 0.42%

Anions of Weak Acids as Weak Bases			
• The anion of the weak acid (HA) is its conjugate base (A ⁻)			
– A ⁻ reacts as a weak base in water:			
$A^- + H_2O \iff HA + OH^- \qquad K_b = \frac{[HA][OH^-]}{[A^-]}$			
$-A^{-}$ can be produced in solution by means of the soluble salt, MA, which dissociates completely: MA(s) $\rightarrow M^{+} + A^{-}$ (M ⁺ is a spectator ion)			
Example: For an aqueous solution of KF			
$KF(s) \rightarrow K^+ + F^-$			
$F^- + H_2O \leftrightarrow HF + OH^-$			

➢HA and A ⁻ are present in both, solutions of the weak acid HA, and solutions of its anion A ⁻				
Solutions of HA: $HA + H_2O \leftrightarrow H_3O^+ + A^-$				
Solutions of A ⁻ : A ⁻ + $H_2O \leftrightarrow HA + OH^-$				
▶Both equilibria are shifted to the left so				
Solutions of HA are acidic (H_3O^+) and [HA] >> [A ⁻]				
Solutions of A ⁻ are basic (OH ⁻) and $[A^-] >> [HA]$				
>HA and A ⁻ are a conjugate acid base pair so				
$K_a(\text{HA}) \times K_b(\text{A}^-) = K_w \longrightarrow K_b(\text{A}^-) = K_w/K_a(\text{HA})$				
► Equilibrium calculations for A ⁻ are carried out using the same method as for the neutral base B				
$K_{b} = \frac{[\text{HA}][\text{OH}^{-}]}{[\text{A}^{-}]} = \frac{x^{2}}{C_{A^{-}} - x}$				

Example: What is the <i>pH</i> of a 0.10 M KF solution? ($K_a = 6.8 \times 10^{-4}$ for HF)					
\rightarrow]	$KF(s) \rightarrow K^+ +$	$F^{-} \rightarrow$	$C_{F} = 0$	0.10 M	
[]	$[1] \mathbf{F}^{-} + \mathbf{H}_{2}\mathbf{O} \leftrightarrow \mathbf{HF} + \mathbf{OH}^{-} \mathbf{K}_{b} = \frac{[\mathbf{HF}][\mathbf{OH}^{-}]}{\mathbf{HF}^{-}}$				
i 0.10 0 0 [F ⁻]					
c	- <i>x</i>	+x	+x	$K_b = \frac{x^2}{0.10 - x} \approx \frac{x^2}{0.10}$	
e	0.10 - <i>x</i>	x	x	$\begin{bmatrix} n_b \\ 0.10 - x \\ 0.10 \end{bmatrix}$	
$\rightarrow h$	$K_b(F^-) = K_w/K_a(1)$	(HF) = 1.0	0×10 ⁻¹⁴ /	$6.8 \times 10^{-4} = 1.5 \times 10^{-11}$	
$\Rightarrow x$	$\Rightarrow \mathbf{x} = (K_b \times 0.10)^{\frac{1}{2}} = (1.5 \times 10^{-11} \times 0.10)^{\frac{1}{2}} = 1.2 \times 10^{-6} = [\text{OH}^-]$				
$\Rightarrow \mathbf{pOH} = -\log[\text{OH}^{-}] = -\log(1.2 \times 10^{-6}) = 5.92$					
$\Rightarrow pH = 14.00 - pOH = 14.00 - 5.92 = 8.08$ (basic)					
[Che	eck assumption: (1.2×10-6/	0.10)×10	0 = 0.0012% < 5%]	

Cations of Weak Bases as Weak Acids

- The cation of the weak base (B) is its conjugate acid (HB⁺)
 - $-HB^+$ reacts as a weak acid in water:

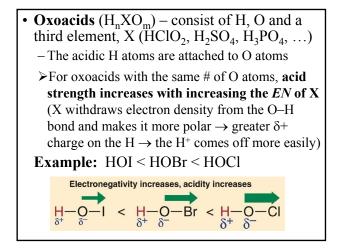
$$HB^{+} + H_{2}O \iff H_{3}O^{+} + B \qquad K_{a} = \frac{[H_{3}O^{+}][B]}{[HB^{+}]}$$

>HB⁺ and B are a conjugate acid-base pair so

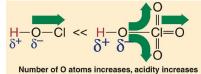
 $K_a(\text{HB}^+) \times K_b(\text{B}) = K_w \longrightarrow K_a(\text{HB}^+) = K_w/K_b(\text{B})$

Equilibrium calculations for HB⁺ are carried out using the same method as for the neutral acid HA

$$K_a = \frac{[\mathbf{H}_3 \mathbf{O}^+][\mathbf{B}]}{[\mathbf{H}\mathbf{B}^+]} = \frac{x^2}{C_{HB^+} - x}$$

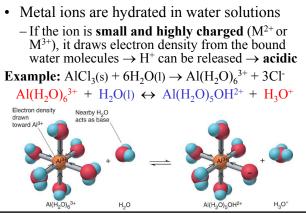

Example: What is the <i>pH</i> of a 0.10 M NH ₄ I solution? ($K_b = 1.8 \times 10^{-5}$ for NH ₃)				
$\rightarrow \mathrm{NH}_4\mathrm{I}(\mathrm{s}) \rightarrow$	$NH_4^+ + I^-$	$\rightarrow c$	$r_{\rm NH4^+} = 0.10 \ {\rm M}$	
$ \begin{array}{ c } \hline & \mathrm{NH}_4^+ + \mathrm{H}_2\mathrm{O} \leftrightarrow \mathrm{H}_3\mathrm{O}^+ + \mathrm{NH}_3 \\ \hline i & 0.10 & 0 & 0 \\ \hline \end{array} K_a = \frac{[\mathrm{H}_3\mathrm{O}^+][\mathrm{NH}_3]}{[\mathrm{NH}_4^+]} $				
<i>i</i> 0.10	0	0	$[\mathrm{NH}_4^+]$	
<i>c</i> - <i>x</i>	+x	+x	$K_a = \frac{x^2}{0.10 - x} \approx \frac{x^2}{0.10}$	
<i>e</i> 0.10 - <i>x</i>	x	x	$R_a = \frac{1}{0.10 - x} \approx \frac{1}{0.10}$	
$K_a(NH_4^+) = K_w/K_b(NH_3) = 1.0 \times 10^{-14}/1.8 \times 10^{-5} = 5.6 \times 10^{-10}$				
$\Rightarrow \mathbf{x} = (K_a \times 0.10)^{\frac{1}{2}} = (5.6 \times 10^{-10} \times 0.10)^{\frac{1}{2}} = 7.5 \times 10^{-6}$				
\Rightarrow [H ₃ O ⁺] = 7.5×10 ⁻⁶ M				
$\Rightarrow pH = -\log[H_3O^+] = -\log(7.5 \times 10^{-6}) = 5.13$ (acidic)				
[Check assumption: $(7.5 \times 10^{-6}/0.10) \times 100 = 0.0075\% < 5\%$]				

18.6 Molecular Properties and Acid Strength


• **Binary acids** (H_nX) – consist of H and a second element, X (HF, HCl, H₂O, H₂S, ...)

≻Acid strength increases across a period (the *EN* of X increases → the H–X bond becomes more polar → greater δ+ charge on the H → greater attraction of the H to the O atom of H₂O) ^{δ-}X−H^{δ+}----- :OH₂ ↔ H₃O⁺ + X⁻ Example: NH₃ << H₂O < HF</p>

Acid strength increases down a group (X becomes larger → the H–X bond becomes longer and weaker → the H⁺ comes off more easily)
 Example: HF << HCl < HBr < HI



For oxoacids having the same X, acid strength increases with increasing the # of O atoms (the high *EN* of O draws electron density from the O–H bond and makes it more polar → greater δ+ charge on the H → the H⁺ comes off more easily)
 Example: HClO < HClO₂ << HClO₃ < HClO₄

➤Adding more *EN* atoms to the molecule increases the acidity further (Ex: CH₃COOH < CF₃COOH)

Acidity of Hydrated Metal Ions

18.7 Acid-Base Properties of Salt Solutions

- The acidity (basicity) of salt solutions depends on the acid-base properties of their ions
- Acidic cations act as weak acids in water

 The cations (conjugate acids) of weak bases (NH₄⁺, CH₃NH₂⁺, ...) → act as weak acids
 Small, highly charged metal cations (Al³⁺, Fe³⁺, Cr³⁺, Cu²⁺, ...) → act as weak acids

- Neutral cations do not influence the pH– The cations of strong bases (Group L Ca^{2+} Sr²⁺
 - The cations of strong bases (Group I, Ca²⁺, Sr²⁺, Ba²⁺) and metal cations with +1 charge (Ag⁺, Cu⁺, ...) are extremely weak acids (weaker than H₂O) \rightarrow do not influence the *pH*

- Basic anions act as weak bases in water
 The anions (conjugate bases) of weak acids (F⁻, CN⁻, S²⁻, PO₄³⁻...) → act as weak bases
- Neutral anions do not influence the *pH*
 - The anions (conjugate bases) of strong acids (Cl⁻, Br, I⁻, NO₃⁻, ClO₄⁻ ...) are extremely weak bases (weaker than H₂O) \rightarrow do not influence the *pH*
- Amphoteric anions of polyprotic acids can act as weak acids or bases in water

- Anions with ionizable protons $(H_2PO_4, HPO_4^2, HSO_3, HSO_3, HSO_4) \rightarrow$ act as either weak acids or weak bases depending on the relative values of their K_a and K_b constants)

Salts of neutral cations and neutral anions yield neutral solutions

Example: NaCl(s) \rightarrow Na⁺ + Cl⁻ (neutral solution) Na⁺ \rightarrow neutral cation (cation of a strong base, NaOH) Cl⁻ \rightarrow neutral anion (anion of a strong acid, HCl)

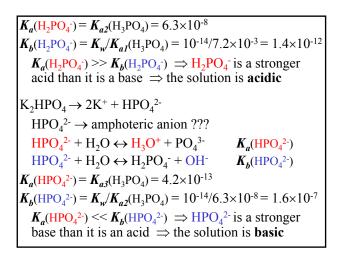
Salts of acidic cations and neutral anions yield acidic solutions

Example: $NH_4Cl(s) \rightarrow NH_4^+ + Cl^-$ (acidic solution) $NH_4^+ \rightarrow$ acidic cation (cation of a weak base, NH_3) $Cl^- \rightarrow$ neutral anion (anion of a strong acid, HCl) $NH_4^+ + H_2O \leftrightarrow H_3O^+ + NH_3$

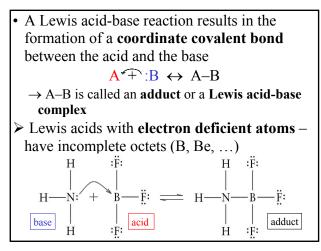
Example: FeCl₃(s) \rightarrow Fe³⁺ + 3Cl⁻ (acidic solution) Fe³⁺ \rightarrow acidic cation (highly charged, small cation) Cl⁻ \rightarrow neutral anion (anion of a strong acid, HCl) Fe(H₂O)₆³⁺ + H₂O \leftrightarrow H₃O⁺ + Fe(H₂O)₅OH²⁺ Salts of **neutral cations** and **basic anions** yield **basic solutions Example:** Na₂S(s) \rightarrow 2Na⁺ + S²⁻ (basic solution) Na⁺ \rightarrow neutral cation (cation of a strong base, NaOH) S²⁻ \rightarrow basic anion (anion of a weak acid, H₂S) S²⁻ + H₂O \leftrightarrow HS⁻ + OH⁻ **Example:** KF(s) \rightarrow K⁺ + F⁻ (basic solution)

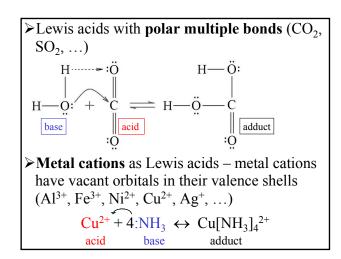
Example: $KF(s) \rightarrow K^+ + F^-$ (basic solution $K^+ \rightarrow$ neutral cation $F^- \rightarrow$ basic anion

Salts of acidic cations and basic anions yield either acidic or basic solutions


- > If K_a of the cation is larger than K_b of the anion, the solution is acidic (cation is a stronger acid)
- > If K_a of the cation is smaller than K_b of the anion, the solution is basic (anion is a stronger base)

Example: $NH_4F(s) \rightarrow NH_4^+ + F^-$


 $NH_4^+ \rightarrow$ acidic cation (cation of a weak base, NH_3) $F^- \rightarrow$ basic anion (anion of a weak acid, HF)


 $\begin{array}{ll} \mathbf{NH_4^+} + \mathbf{H_2O} \leftrightarrow \mathbf{H_3O^+} + \mathbf{NH_3} & \mathbf{K_a(\mathbf{NH_4^+})} = 5.7 \times 10^{-10} \\ \mathbf{F^-} + \mathbf{H_2O} \leftrightarrow \mathbf{HF} + \mathbf{OH^-} & \mathbf{K_b(\mathbf{F^-})} = 1.5 \times 10^{-11} \\ \mathbf{K_a(\mathbf{NH_4^+})} > \mathbf{K_b(\mathbf{F^-})} \Rightarrow \mathbf{NH_4^+} \text{ is a stronger acid than F-} \\ \text{ is a base } \Rightarrow \text{ the solution is slightly acidic} \end{array}$

Salts of neutral cations and amphoteric anions yield either acidic or basic solutions
> If K_a of the anion is larger than its K_b , the solution is acidic (the anion is a stronger acid)
> If K_a of the anion is smaller than its K_b , the solution is basic (the anion is a stronger base)
Example: Predict whether solutions of KH_2PO_4 and K_2HPO_4 are acidic, basic or neutral.
$\mathrm{KH}_{2}\mathrm{PO}_{4} \rightarrow \mathrm{K}^{+} + \mathrm{H}_{2}\mathrm{PO}_{4}^{-}$
$K^+ \rightarrow$ neutral cation (cation of a strong base, KOH) $H_2PO_4^- \rightarrow$ amphoteric anion ???
$H_2PO_4^- + H_2O \leftrightarrow H_3O^+ + HPO_4^{-2-} K_a(H_2PO_4^-)$
$H_2PO_4^- + H_2O \leftrightarrow H_3PO_4 + OH^- \qquad \mathbf{K}_{\mathbf{b}}(H_2PO_4^-)$

18.8 The Lewis Acid-Base Definition Acids – electron pair acceptors Bases – electron pair donors The Lewis acid-base definition does not require the exchange of a proton (Lewis acids don't have to have H in their formulas) Expands the scope of possible acids H⁺ itself is a Lewis acid since it accepts an e⁻ pair from a base (H⁺ (+):B ↔ H–B⁺) ⇒ All B-L acids donate a Lewis acid (H⁺) Lewis bases must contain an e⁻ pair to donate Lewis acids must have a vacant orbital in order to accept the e⁻ pair from the base

- Many metals act as Lewis acids in biomolecules (Fe in hemoglobin, Mg in chlorophyll, ...)
- The Lewis definition has the widest scope of the three acid-base definitions, while the Arrhenius definition has the narrowest scope

Examples:

 \rightarrow BF₃ is a Lewis acid but not a B-L or Arrhenius acid \rightarrow F⁻ is a Lewis and B-L base but not an Arrhenius

base Lewis \rightarrow B^+ : $F^- \leftrightarrow BF_4^$ acid base adduct H^+ : $F^- + H_2O \leftrightarrow HF + OH^ B^-L \rightarrow base acid acid base$