Acid-Base Equilibria

- Acids - sharp, sour taste; Bases - soapy, bitter taste
- Neutralization (proton transfer) reactions acid + base \rightarrow salt + water (or other products)

- Hydronium ion - $\mathrm{H}_{3} \mathrm{O}^{+}$

18.1 Acid-Base Definitions

- Arrhenius definition - defines acids and bases in terms of their behavior in water
- Acids - contain H and release \mathbf{H}^{+}in water
- Bases - contain OH and release $\mathbf{O H}^{-}$in water
- Arrhenius acid-base reaction - a combination of the H^{+}from the acid with the OH^{-}from the base

$$
\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$

- The Arrhenius definition has severe limitations
- Limited to water solutions
- Some bases do not contain $\mathrm{OH}\left(\mathrm{NH}_{3}\right.$, amines, $\mathrm{Na}_{2} \mathrm{~S}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \ldots$)
- Bronsted-Lowry definition - defines acids and bases in relation to the H^{+}ion (proton)
- Acids - proton donors (must contain H)
- Bases - proton acceptors (must contain a lone pair to bind the H^{+})
- All Arrhenius bases are also B-L bases, but not all B-L bases are Arrhenius bases
$>$ Weak acids - partially deprotonated in $\mathrm{H}_{2} \mathrm{O}$ $\rightarrow \mathrm{HF}, \mathrm{HCN}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HCOOH}, \mathrm{CH}_{3} \mathrm{COOH}, \ldots$
Example: $\quad \mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{F}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ \rightarrow Only a small fraction ($\sim 2.5 \%$) of the HF molecules are dissociated to ions

$$
\stackrel{\stackrel{\mathrm{H}^{+}}{\mathrm{B}+\mathrm{H}_{2} \mathrm{O}} \rightarrow \mathrm{HB}^{+}+\mathrm{OH}^{-}}{\text {protonation of the base B }}
$$

$>$ Strong bases - completely protonated (dissociated, ionized) in $\mathrm{H}_{2} \mathrm{O}$
\rightarrow Group I and II oxides and hydroxides
Example: $\mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-}$

Conjugate acid-base pairs

\rightarrow The reverse reaction is viewed as a B-L acidbase reaction too
$\rightarrow \mathrm{HA} / \mathrm{A}^{-}$and $\mathrm{HB}^{+} / \mathrm{B}$ are called conjugate acid-base pairs (acid/base - acid component is written first)
\rightarrow Differ from each other by a proton $\left(\mathrm{H}^{+}\right)$- the acid component of the pair has one more H^{+}
Examples: HF/F-, $\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{4}^{+} / \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}$ $>\mathrm{B}-\mathrm{L}$ acid-base reactions occur when an acid and a base react to form their conjugate base and acid

$$
\text { Acid }_{1}+\text { Base }_{2} \leftrightarrow \text { Base }_{1}+\text { Acid }_{2}
$$

Table 18.4 The Conjugate Pairs in Some Acid-Base Reactions						
Acid	Conjugate Pair			Base	+	Acid
	+	Base				
			Conjugate Pair			
HF	+	$\mathrm{H}_{2} \mathrm{O}$		F^{-}	+	$\mathrm{H}_{3} \mathrm{O}^{+}$
HCOOH	+	CN^{-}	\cdots	HCOO^{-}	+	HCN
$\mathrm{NH}_{4}{ }^{+}$	+	$\mathrm{CO}_{3}{ }^{2-}$	$\stackrel{\square}{\square}$	NH_{3}	+	$\mathrm{HCO}_{3}{ }^{-}$
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	+	OH^{-}	\rightleftharpoons	$\mathrm{HPO}_{4}{ }^{2-}$	+	$\mathrm{H}_{2} \mathrm{O}$

Example: Identify the conjugate acid-base pairs in the reaction

$$
\begin{aligned}
& \mathrm{HSO}_{3}{ }^{-}+\mathrm{S}^{2-} \leftrightarrow \mathrm{SO}_{3}{ }^{2-}+\mathrm{HS}^{-} \\
& \rightarrow \mathrm{HSO}_{3}^{-} / \mathrm{SO}_{3}^{2-} \\
& \rightarrow \mathrm{HSS}^{-} / \mathrm{S}^{2-}
\end{aligned}
$$

Name (Formula)	Lewis Structure*	$K_{\text {a }}$	
Chlorous acid (HClO_{2})	$\mathrm{H}-\ddot{O}-\mathrm{C} \mathrm{C}=\ddot{O}$	1.12×10^{-2}	
Nitrous acid (HNO_{2})	$\mathrm{H}-\ddot{\mathrm{O}}-\ddot{\mathrm{N}}=\ddot{O}$	7.1×10^{-4}	
Hydrofluoric acid (HF)	H- F :	6.8×10^{-4}	
Formic acid (HCOOH)		1.8×10^{-4}	든
Acetic acid ($\left.\mathrm{CH}_{3} \mathrm{COOH}\right)$		1.8×10^{-5}	
Hypochlorous acid (HClO)	$\mathrm{H}-\ddot{\mathrm{O}}-\mathrm{C} \mathrm{C}$:	2.9×10^{-8}	
Hypobromous acid (HBrO)	$\mathrm{H}-\mathrm{O}-\ddot{\mathrm{Br}}$:	2.3×10^{-9}	
Hydrocyanic acid (HCN)	$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$:	6.2×10^{-10}	
Hypoiodous acid (HIO)	H-ÖÖ:	2.3×10^{-11}	

Quantifying Acid/Base Strengths

- Acid ionization constant (\boldsymbol{K}_{a})
- For a general weak acid, HA, in water

$$
\begin{aligned}
& \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
& \boldsymbol{K}_{c}=\frac{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]\left[\mathbf{A}^{-}\right]}{[\mathbf{H A}]\left[\mathbf{H}_{2} \mathbf{O}\right]} \quad \begin{array}{l}
\rightarrow\left[\mathbf{H}_{2} \mathbf{O}\right] \text { can be assumed } \\
\text { constant and combined }
\end{array} \\
& \text { with } \boldsymbol{K}_{\boldsymbol{c}} \\
& \Rightarrow K_{a}=\frac{\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \rightarrow K_{a}=\boldsymbol{K}_{c}\left[\mathrm{H}_{2} \mathbf{O}\right] \\
& \uparrow \boldsymbol{K}_{\boldsymbol{a}} \Leftrightarrow \uparrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \text {and } \uparrow\left[\mathrm{A}^{-}\right] \Leftrightarrow \uparrow \% \text { dissociation } \\
& \text { Higher } K_{a} \Leftrightarrow \text { Stronger acid }
\end{aligned}
$$

- Base ionization constant $\left(K_{b}\right)$

-For a general weak base, B, in water
\(\left.\left.$$
\begin{array}{cl}\mathrm{B}+\mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{HB}^{+}+\mathrm{OH}^{-} \\
\boldsymbol{K}_{\boldsymbol{c}}=\frac{\left[\mathbf{H B}^{+}\right]\left[\mathbf{O H}^{-}\right]}{[\mathbf{B}]\left[\mathbf{H}_{2} \mathbf{O}\right]} & \begin{array}{l}\rightarrow\left[\mathbf{H}_{\mathbf{2}} \mathbf{O}\right] \text { can be assumed } \\
\text { constant and combined } \\
\text { with } \boldsymbol{K}_{\boldsymbol{c}}\end{array} \\
\Rightarrow \boldsymbol{K}_{b}=\frac{\left[\mathbf{H B}^{+}\right]\left[\mathbf{O H}^{-}\right]}{[\mathbf{B}]} & \rightarrow \boldsymbol{K}_{\boldsymbol{b}}=\boldsymbol{K}_{c}\left[\mathbf{H}_{\mathbf{2}} \mathbf{O}\right]\end{array}
$$\right] \begin{array}{l}\uparrow \boldsymbol{K}_{\boldsymbol{b}} \Leftrightarrow \uparrow\left[\mathrm{HB}^{+}\right] and \uparrow\left[\mathrm{OH}^{-}\right] \Leftrightarrow \uparrow \% dissociation

\rightarrow Higher \boldsymbol{K}_{\boldsymbol{b}} \Leftrightarrow Stronger base\end{array}\right]\)| A key structural feature of all B-L bases is a |
| :--- |
| lone pair of \mathbf{e}^{-}s needed to bind the proton |

18.2 Autoionization of Water and $\mathbf{p H}$

- Water can act as both proton donor (acid) and proton acceptor (base) \rightarrow amphoteric

Autoionization (autoprotolysis)

- Ion-product constant of water $\left(\boldsymbol{K}_{w}\right)$
\(\left.$$
\begin{array}{ll}\boldsymbol{K}_{c}=\frac{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathbf{H}_{2} \mathbf{O}\right]^{2}} & \begin{array}{l}\rightarrow\left[\mathbf{H}_{2} \mathbf{O}\right] \text { can be assumed } \\
\text { constant and combined }\end{array}
$$

with \boldsymbol{K}_{c}\end{array}\right]\)| $\rightarrow \boldsymbol{K}_{w}=\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$ | $\boldsymbol{K}_{w}=\boldsymbol{K}_{c}\left[\mathbf{H}_{2} \mathbf{O}\right]^{2}$ |
| :--- | :--- |
| $\boldsymbol{K}_{w} \rightarrow$ ion-product (autoprotolysis) constant of water | |

$>$ At $25^{\circ} \mathrm{C}, \boldsymbol{K}_{w}=\mathbf{1 . 0 \times 1 0 ^ { - 1 4 }}$
$>$ In pure water $\rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\boldsymbol{x}$

$$
\begin{aligned}
& \rightarrow \boldsymbol{K}_{w}=\boldsymbol{x}^{2} \rightarrow \boldsymbol{x}=\sqrt{ } \boldsymbol{K}_{w}=\sqrt{ } 1.0 \times 10^{-14}=1.0 \times 10^{-7} \\
& \quad \Rightarrow\left[\mathbf{H}_{\mathbf{3}} \mathbf{O}^{+}\right]=\left[\mathbf{O H}^{-}\right]=\mathbf{1 . 0} \times \mathbf{1 0}^{-7} \mathbf{M}
\end{aligned}
$$

$>$ In water solutions $\rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$are inversely proportional to each other

$$
\rightarrow K_{w}=\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \Rightarrow \uparrow\left[\mathbf{H}_{3} \mathbf{O}^{+}\right] \Leftrightarrow \downarrow\left[\mathrm{OH}^{-}\right]
$$

$\Rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}are present in different proportions in both acid and base solutions
Neutral solutions $\rightarrow \quad\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
Acidic solution $\rightarrow \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
Basic solutions $\rightarrow \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$

The $\mathbf{p H}$ Scale

- The pH scale is a logarithmic scale

$$
p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
\rightarrow \log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\boldsymbol{p} \boldsymbol{H} \quad \Rightarrow \quad\left[\mathbf{H}_{3} \mathrm{O}^{+}\right]=\mathbf{1 0} 0^{-p H}
$$

$\uparrow\left[\mathbf{H}_{3} \mathbf{O}^{+}\right] \Leftrightarrow \downarrow \boldsymbol{p H}$

\rightarrow If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1 \times 10^{-7} \mathrm{M}$ (neutral solution)
$\rightarrow \boldsymbol{p} \boldsymbol{H}=-\log \left(1 \times 10^{-7}\right) \rightarrow$ neutral solution $\rightarrow \boldsymbol{p H}=\mathbf{7}$
\rightarrow If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>1 \times 10^{-7} \mathrm{M} \rightarrow$ acidic solution $\rightarrow \mathrm{pH}<7$
\rightarrow If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<1 \times 10^{-7} \mathrm{M} \rightarrow$ basic solution $\rightarrow \boldsymbol{p H}>7$
Examples: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \rightarrow \boldsymbol{p} \boldsymbol{H}=-\log 1=\mathbf{0}$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-14} \rightarrow \boldsymbol{p} \boldsymbol{H}=-\log 10^{-14}=\mathbf{1 4}
$$

Example: Calculate the concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$ and OH^{-}in 0.10 M HCl and $0.10 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ solutions.
$\rightarrow \mathrm{HCl}$ is a strong acid \rightarrow completely dissociated in water solutions; $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
$\Rightarrow 0.10 \mathrm{M} \mathrm{HCl} \rightarrow\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]=\mathbf{0 . 1 0 ~ M}$
$\Rightarrow\left[\mathrm{OH}^{-}\right]=\boldsymbol{K}_{w} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} / 0.10$
$\Rightarrow\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-13} \mathrm{M} \Rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \gg\left[\mathrm{OH}^{-}\right]$
$\rightarrow \mathrm{Ba}(\mathrm{OH})_{2}$ is a strong base \rightarrow completely dissociated in water solutions; $\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{Ba}^{2+}+2 \mathrm{OH}^{-}$
$\Rightarrow 0.10 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2} \rightarrow\left[\mathrm{OH}^{-}\right]=\mathbf{0 . 2 0} \mathrm{M}$
$\Rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\boldsymbol{K}_{w} /\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} / 0.20$
$\Rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.0 \times 10^{-14} \mathrm{M} \Rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \ll\left[\mathrm{OH}^{-}\right]$

```
- The \(p\)-notation \(\rightarrow p X=-\log X\)
    \(p O H=-\log \left[\mathrm{OH}^{-}\right]\)
    \(\rightarrow \log \left[\mathrm{OH}^{-}\right]=-\mathbf{p O H} \Rightarrow\left[\mathrm{OH}^{-}\right]=\mathbf{1 0}^{-\boldsymbol{p O H}}\)
        \(p K_{w}=-\log K_{w}\)
\(\rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\boldsymbol{K}_{w} \leftarrow\) (take a - \(\log\) )
\(\rightarrow-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\left(-\log \left[\mathrm{OH}^{-}\right]\right)=-\log \boldsymbol{K}_{w}\)
    \(\Rightarrow \mathrm{pH}+\mathrm{pOH}=\mathrm{pK} \mathrm{K}_{\mathrm{w}}\)
\(\rightarrow \mathrm{At} 25^{\circ} \mathrm{C}, \boldsymbol{K}_{w}=\mathbf{1 . 0 \times 1 0 ^ { - 1 4 }} \rightarrow \boldsymbol{p} \boldsymbol{K}_{w}=14.00\)
    \(\Rightarrow \mathrm{pH}+\mathrm{pOH}=14.00\)
\(\rightarrow\) If \(\mathbf{p H}=7 \rightarrow \boldsymbol{p O H}=7 \rightarrow\) neutral solution
\(\rightarrow\) Acidic ( \(\downarrow \mathrm{pH}, \uparrow \mathrm{pOH}) ; \quad\) Basic ( \(\uparrow \mathrm{pH}, \downarrow \mathrm{pOH})\)
```

		$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	pH	[OH^{-}]	pOH
	BASIC	1.0×10^{-15}	15.00	1.0×10^{1}	-1.00
		1.0×10^{-14}	14.00	1.0×10^{0}	0.00
		1.0×10^{-13}	13.00	1.0×10^{-1}	1.00
		1.0×10^{-12}	12.00	1.0×10^{-2}	2.00
		1.0×10^{-11}	11.00	1.0×10^{-3}	3.00
		1.0×10^{-10}	10.00	1.0×10^{-4}	4.00
		1.0×10^{-9}	9.00	1.0×10^{-5}	5.00
		1.0×10^{-8}	8.00	1.0×10^{-6}	6.00
	NEUTRAL	1.0×10^{-7}	7.00	1.0×10^{-7}	7.00
	ACIDIC	1.0×10^{-6}	6.00	1.0×10^{-8}	8.00
		1.0×10^{-5}	5.00	1.0×10^{-9}	9.00
		1.0×10^{-4}	4.00	1.0×10^{-10}	10.00
		1.0×10^{-3}	3.00	1.0×10^{-11}	11.00
		1.0×10^{-2}	2.00	1.0×10^{-12}	12.00
		1.0×10^{-1}	1.00	1.0×10^{-13}	13.00
		1.0×10^{0}	0.00	1.0×10^{-14}	14.00
		1.0×10^{1}	-1.00	1.0×10^{-15}	15.00

Example: A household ammonia solution has a $\boldsymbol{p H}$ of 11.92. What is the $\boldsymbol{p O H}$ and the concentration of OH^{-}in it?
$\rightarrow p O H=14.00-p H=14.00-11.92=2.08$
$\rightarrow\left[\mathrm{OH}^{-}\right]=10^{-p O H}=10^{-2.08}=8.3 \times 10^{-3}$
Note: The \# of sig. figs in $\left[\mathrm{OH}^{-}\right]$(or $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$) equals the number of decimal places in $\boldsymbol{p O H}$ (or $\boldsymbol{p H}$)

- Measuring $\boldsymbol{p H}$ in the laboratory
- Indicators - have different colors at different $\boldsymbol{p H}$ ($\boldsymbol{p H}$ paper, indicator solutions)
$-\boldsymbol{p H}$ meters - measure the $\boldsymbol{p H}$ by measuring the potential of a $\boldsymbol{p H}$ sensitive electrode immersed in the solution (more accurate)

K_{a} and K_{b} of a Conjugate Acid-Base Pair

- In a solution of the weak acid HA, both HA and its conjugate base, \mathbf{A}^{-}, react with water

$$
\begin{aligned}
& \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{~A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \quad \boldsymbol{K}_{\boldsymbol{a}} \text { (of HA) } \\
& \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HA}+\mathrm{OH}^{-} \quad \boldsymbol{K}_{\boldsymbol{b}} \text { (of A-) } \\
& \oplus \rightarrow \overline{\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \quad \boldsymbol{K}_{w}=\boldsymbol{K}_{a} \times \boldsymbol{K}_{\boldsymbol{b}}} \\
& \boldsymbol{K}_{a} \times \boldsymbol{K}_{b}=\frac{\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \times \frac{\left[\mathrm{HA}^{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}=\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\boldsymbol{K}_{n} \\
& \Rightarrow \text { For a conjugate acid-base pair } \rightarrow \boldsymbol{K}_{a} \times \boldsymbol{K}_{\boldsymbol{b}}=\boldsymbol{K}_{w} \\
& -\log \boldsymbol{K}_{\boldsymbol{a}}+\left(-\log \boldsymbol{K}_{b}\right)=-\log \boldsymbol{K}_{w} \\
& \Rightarrow p \boldsymbol{K}_{a}+\boldsymbol{p} \boldsymbol{K}_{b}=\boldsymbol{p} \boldsymbol{K}_{w} \rightarrow \mathrm{At} 25^{\circ} \mathrm{C}, \boldsymbol{p} \boldsymbol{K}_{a}+\boldsymbol{p} \boldsymbol{K}_{b}=\mathbf{1 4 . 0 0}
\end{aligned}
$$

18.3 Relative Acid-Base Strength and the Net Direction of Reaction

- An acid-base reaction proceeds to a greater extent from the stronger acid and stronger base towards the weaker acid and weaker base
$\mathrm{HA}+\mathrm{B} \leftrightarrow \mathrm{A}^{-}+\mathrm{HB}^{+}$ stronger acid + stronger base \rightarrow weaker base + weaker acid \rightarrow The reaction is shifted towards A- and $\mathrm{HB}^{+}\left(\boldsymbol{K}_{c}>1\right)$
Examples:
$\mathrm{HF}+\mathrm{NH}_{3} \leftrightarrow \mathrm{~F}^{-}+\mathrm{NH}_{4}^{+}$ stronger acid + stronger base \rightarrow weaker base + weaker acid
$\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{F}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$ weaker acid + weaker base \leftarrow stronger base + stronger acid
$>$ The stronger the acid, the weaker its conjugate base and vice versa

$$
\begin{aligned}
\uparrow K_{a} & \downarrow K_{b} \\
\downarrow \boldsymbol{p} \boldsymbol{K}_{a} & \Leftrightarrow \uparrow \boldsymbol{p} K_{b}
\end{aligned}
$$

Example: The \boldsymbol{K}_{a} of HF is 6.8×10^{-4}. What is the \boldsymbol{K}_{b} of F^{-}?
$\boldsymbol{K}_{b}=\boldsymbol{K}_{w} / \boldsymbol{K}_{\boldsymbol{a}}=$
$=1.0 \times 10^{-14} / 6.8 \times 10^{-4}$
$K_{b}=1.5 \times 10^{-11}$

Example:
Given $\boldsymbol{K}_{a}(\mathrm{HF})=6.8 \times 10^{-4}$ and $\boldsymbol{K}_{a}(\mathrm{HCN})=6.2 \times 10^{-10}$, determine the preferred direction of the reaction

$$
\mathrm{F}^{-}+\mathrm{HCN} \leftrightarrow \mathrm{HF}+\mathrm{CN}^{-}
$$

\rightarrow Compare the strengths of the acids on both sides $\rightarrow \mathrm{HF}$ is stronger than HCN (HF has higher \boldsymbol{K}_{a} value)
\rightarrow Compare the strengths of the bases on both sides \rightarrow Since HF is a stronger acid than HCN, the conjugate base of $\mathrm{HF}, \mathrm{F}^{-}$, is a weaker base than the conjugate base of $\mathrm{HCN}, \mathrm{CN}^{-}$
$\rightarrow \mathrm{CN}^{-}$is stronger than $\mathrm{F}^{-}\left(\mathrm{CN}^{-}\right.$has higher $\boldsymbol{K}_{\boldsymbol{b}}$ value)
$\Rightarrow \mathrm{F}^{-}+\mathrm{HCN} \leftrightarrow \mathrm{HF}+\mathrm{CN}^{-}$is shifted to the left $\left(\boldsymbol{K}_{\boldsymbol{c}}<1\right)$

18.4 Solving Problems Involving Weak Acid Equilibria

- In a water solution of the weak acid, HA, there are two sources of $\mathrm{H}_{3} \mathrm{O}^{+}$:

1. $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \quad$ (dissociation of HA)
2. $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$(autoionization)
$\rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{1}=\left[\mathrm{A}^{-}\right] \quad$ and $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{2}=\left[\mathrm{OH}^{-}\right]$
$\rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{1}+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{2}=\left[\mathrm{A}^{-}\right]+\left[\mathrm{OH}^{-}\right]$
\rightarrow If HA is not very dilute or very weak, the autoionization can be neglected and $\left.\left[\mathrm{OH}^{-}\right] \ll \mathrm{A}^{-}\right]$

$$
\Rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \approx\left[\mathrm{A}^{-}\right]=x
$$

- In water solution, the weak acid HA exists in two forms \rightarrow undissociated (HA) and dissociated (A^{-})
$\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$
$\rightarrow \boldsymbol{C}_{\boldsymbol{H A}}$ - total concentration of HA
$\rightarrow C_{H A}=[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]$

$$
\Rightarrow[\mathrm{HA}]=C_{H A}-\left[\mathrm{A}^{-}\right]=C_{H A}-x
$$

$\rightarrow \mathrm{So}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\boldsymbol{x},\left[\mathrm{A}^{-}\right]=\boldsymbol{x},[\mathrm{HA}]=C_{H A}-\boldsymbol{x}$
$K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{x^{2}}{C_{H A}-x}$
$>$ Using equilibrium tables
\rightarrow If he autoionization of water is neglected

$\begin{array}{\|l} \hline \ddot{+} \\ 0 \\ 11 \\ 0 \end{array}$	[]	HA +			$K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
	i	$C_{H A}$	0	0	
	c	-x	+ x	+ x	$K_{a}=\frac{x^{2}}{C_{H A}-x}$
	e	$C_{H 4}-x$	x	x	

\rightarrow The quadratic equation can be solved for \boldsymbol{x} in order to determine $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\boldsymbol{p} \boldsymbol{H}$
\rightarrow If \boldsymbol{x} is less than 5% of $\boldsymbol{C}_{\boldsymbol{H A}}, \boldsymbol{x}$ can be neglected in
the denominator (5% rule) \rightarrow works if $\boldsymbol{C}_{\boldsymbol{H A}}$ is relatively large and $\boldsymbol{K}_{\boldsymbol{a}}$ is small $\left(\boldsymbol{C}_{\boldsymbol{H} A} / \boldsymbol{K}_{\boldsymbol{a}}>400\right)$

$$
K_{a}=x^{2} / C_{H A} \quad x=\left(K_{a} C_{H A}\right)^{1 / 2}=\left[\mathbf{H}_{3} \mathrm{O}^{+}\right]
$$

Finding Concentrations and $\boldsymbol{p} \boldsymbol{H}$ Given $\boldsymbol{K}_{\boldsymbol{a}}$
Example: What is the $\boldsymbol{p H}$ of a $\mathbf{0 . 3 0}$ M HF solution? $\left(K_{a}=\mathbf{6 . 8} \times 10^{-4}\right.$ for HF$)$

	$\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$			$\boldsymbol{K}_{a}=\frac{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]\left[\mathbf{F}^{-}\right]}{[\mathbf{H F}]}$
i	0.30	0	0	
	$-x$	$+x$	+x	
	0.30-x	x		
$\rightarrow \boldsymbol{C}_{\boldsymbol{H F}}=0.30 \rightarrow$ assume $\boldsymbol{x}<5 \%$ of $\mathbf{0 . 3 0}$				
$\Rightarrow \boldsymbol{x}=\left(K_{a} C_{H F}\right)^{1 / 2}=\left(6.8 \times 10^{-4} \times 0.30\right)^{1 / 2}=1.4 \times 10^{-2}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$				
$\Rightarrow \boldsymbol{p} \boldsymbol{H}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(1.4 \times 10^{-2}\right)=\mathbf{1 . 8 5}$				
[Check assumption: $\left(1.4 \times 10^{-2} / 0.30\right) \times 100=4.8 \%<5 \%$]				

Example: Calculate the \% dissociation for two HF solutions with concentrations $\mathbf{0 . 3 0}$ and $\mathbf{3 . 0} \mathbf{M}$. ($\boldsymbol{K}_{a}=\mathbf{6 . 8} \times 10^{-4}$ for HF)
\rightarrow For the $\mathbf{0 . 3 0} \mathrm{M} \mathrm{HF}$ from the previous example:
$\boldsymbol{x}=\left(K_{a} C_{H F}\right)^{1 / 2}=\left(6.8 \times 10^{-4} \times 0.30\right)^{1 / 2}=1.4 \times 10^{-2}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
\% dissociated $=\left(1.4 \times 10^{-2} / 0.30\right) \times 100=\mathbf{4 . 8 \%}$
\rightarrow For the $\mathbf{3 . 0}$ M HF similarly:
$\boldsymbol{x}=\left(K_{a} C_{H F}\right)^{1 / 2}=\left(6.8 \times 10^{-4} \times 3.0\right)^{1 / 2}=4.5 \times 10^{-2}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ \% dissociated $=\left(4.5 \times 10^{-2} / 3.0\right) \times 100=\mathbf{1 . 5 \%}$
\Rightarrow Increasing the concentration from 0.30 to 3.0 M decreases the \% dissociated from 4.8 to 1.5%

Finding $\boldsymbol{K}_{\boldsymbol{a}}$ Given Concentrations or $\boldsymbol{p H}$
Example: If the $\boldsymbol{p} \boldsymbol{H}$ of a $\mathbf{0 . 2 0} \mathrm{M}$ HCN solution is 4.95, calculate the K_{a} of HCN .
$\rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-4.95}=1.1 \times 10^{-5}=\boldsymbol{x}$
$\rightarrow \boldsymbol{C}_{\boldsymbol{H C N}}=0.20 \quad \rightarrow \quad \boldsymbol{x} \ll 5 \%$ of $\boldsymbol{C}_{\boldsymbol{H C N}}$

[]	$\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}^{-}$			$K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CN}^{-}\right]}{[\mathrm{HCN}]}$		
i	0.20	0	0			
c	-x	+ x	+ x			
e	0.20-x	x	x			

$\Rightarrow \boldsymbol{K}_{\boldsymbol{a}}=\boldsymbol{x}^{2} / \boldsymbol{C}_{\boldsymbol{H C N}}=\left(1.1 \times 10^{-5}\right)^{2} / 0.20=\mathbf{6 . 3} \times \mathbf{1 0}^{-10}$
[Note: $C_{H A} / K_{a}=0.20 / 6.3 \times 10^{-10}=3.2 \times 10^{8} \gg 400$]

Extent of Acid Dissociation

- Percent dissociation
$\begin{aligned} & \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\ & \rightarrow \boldsymbol{C}_{\boldsymbol{H A}}=[\mathrm{HA}]+\left[\mathrm{A}^{-}\right] \quad \rightarrow\left[\mathrm{A}^{-}\right] \approx\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\ & \rightarrow\left[\mathrm{A}^{-}\right]=\boldsymbol{x} \text { (dissociated form of the acid) } \\ & \% \text { dissociated }=\frac{\left[\mathrm{A}^{-}\right]}{\boldsymbol{C}_{\boldsymbol{H A}}} \times \mathbf{1 0 0}=\frac{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]}{\boldsymbol{C}_{\boldsymbol{H A}}} \times \mathbf{1 0 0}=\frac{\boldsymbol{x}}{\boldsymbol{C}_{\boldsymbol{H A}}} \times \mathbf{1 0 0}\end{aligned}$
$>$ For a given acid, \% dissociated decreases with increasing the total concentration of the acid, $\boldsymbol{C}_{\boldsymbol{H A}}$

$$
\uparrow C_{H A} \Leftrightarrow \downarrow \% \text { dissociation }
$$

The Behavior of Polyprotic Acids

- Polyprotic Acids - can donate more than one proton $\left(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}, \ldots\right)$
- For a general diprotic acid, $\mathrm{H}_{2} \mathrm{~A}$
$\mathrm{H}_{2} \mathrm{~A}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HA}^{-} \quad \boldsymbol{K}_{\boldsymbol{a l}}$
$\mathrm{HA}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{2-} \quad \boldsymbol{K}_{\boldsymbol{a} 2}$
$\boldsymbol{K}_{a 1}=\frac{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]\left[\mathrm{HA}^{-}\right]}{\left[\mathrm{H}_{2} \mathbf{A}\right]} \quad \boldsymbol{K}_{a 2}=\frac{\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]\left[\mathrm{A}^{2-}\right]}{\left[\mathrm{HA}^{-}\right]}$
$>$ Almost all polyprotic acids (except $\mathrm{H}_{2} \mathrm{SO}_{4}$) are weak in all stages of dissociation and become weaker with each successive dissociation

$$
K_{a 1}>K_{a 2}>K_{a 3} \ldots
$$

\rightarrow Consider only the first dissociation to get the $\boldsymbol{p} \boldsymbol{H}$				
$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$				$-K_{a 1}=\frac{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]\left[\mathbf{H}_{2} \mathbf{P O}_{4}^{-}\right]}{\left[\mathbf{H}_{3} \mathbf{P O}_{4}\right]}$
i	0.10	0	0	
c	$-x$	$+x$	+ x	$K^{\prime}=\boldsymbol{x}^{2}$
e	0.10-x	\boldsymbol{x}	\boldsymbol{x}	0.10-x 0.10

\rightarrow Assume $\boldsymbol{x}<5 \%$ of $\mathbf{0 . 1 0}$
$\Rightarrow \boldsymbol{x}=\left(K_{a l} \times 0.10\right)^{1 / 2}=\left(7.2 \times 10^{-3} \times 0.10\right)^{1 / 2}=2.7 \times 10^{-2}$
\rightarrow Check assumption: $\left(2.7 \times 10^{-2} / 0.10\right) \times 100=27 \%>5 \%$
\Rightarrow The assumption is not justified - must solve the quadratic equation

$$
\begin{gathered}
\boldsymbol{x}^{2}=K_{a l}(0.10-\boldsymbol{x}) \quad \boldsymbol{x}^{2}+K_{a l} \boldsymbol{x}-0.10 K_{a l}=0 \\
\boldsymbol{x}^{2}+7.2 \times 10^{-3} \boldsymbol{x}-7.2 \times 10^{-4}=0
\end{gathered}
$$

18.5 Solving Problems Involving Weak Base Equilibria

- In a water solution of the weak base, B, there are two sources of OH^{-}:

1. $\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HB}^{+}+\mathrm{OH}^{-} \quad$ (ionization of B)
2. $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$(autoionization)
$\rightarrow\left[\mathrm{OH}^{-}\right]_{1}=\left[\mathrm{HB}^{+}\right] \quad$ and $\quad\left[\mathrm{OH}^{-}\right]_{2}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\rightarrow\left[\mathrm{OH}^{-}\right]=\left[\mathrm{OH}^{-}\right]_{1}+\left[\mathrm{OH}^{-}\right]_{2}=\left[\mathrm{HB}^{+}\right]+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
\rightarrow If B is not very dilute or very weak, the autoionization can be neglected and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \ll\left[\mathrm{HB}^{+}\right]$

$$
\Rightarrow\left[\mathrm{OH}^{-}\right] \approx\left[\mathrm{HB}^{+}\right]=x
$$

> The second and third dissociations are less pronounced because it's harder to remove an H^{+} from negatively charged ions
Equilibrium calculations are greatly simplified by neglecting subsequent dissociations since they contribute negligible amounts of $\mathrm{H}_{3} \mathrm{O}^{+}$

Example: Calculate the $\boldsymbol{p H}$ and the concentrations of all ionized forms for a $\mathbf{0 . 1 0} \mathbf{M ~ H}_{3} \mathrm{PO}_{4}$ solution. $\left(K_{a 1}=7.2 \times 10^{-3}, K_{a 2}=6.3 \times 10^{-8}, K_{a 3}=4.2 \times 10^{-13}\right)$
$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \quad \boldsymbol{K} \boldsymbol{a} \boldsymbol{1}$ $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HPO}_{4}{ }^{2-}$
$\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{PO}_{4}{ }^{3-}$
$\boldsymbol{K}_{a 2}$
$\boldsymbol{K}_{a 3}$

$>$ Using equilibrium tables
\rightarrow If he autoionization of water is neglected

\cdots	[]	B +	HB	H^{-}	$K_{b}=\frac{\left[\mathrm{HB}^{+}\right][\mathbf{O H}}{[\mathrm{B}]}$
	i	C_{B}	0	0	
3	c	-x	+x	+ x	$K_{b}=x^{2}$
0	e	$C_{B}-x$	x	x	$C_{B}-x$

\rightarrow The quadratic equation can be solved for \boldsymbol{x} in order to determine $\left[\mathrm{OH}^{-}\right], \boldsymbol{p} \boldsymbol{O H}$ and $\boldsymbol{p} \boldsymbol{H}$
\rightarrow If \boldsymbol{x} is less than 5% of $\boldsymbol{C}_{\boldsymbol{B}}, \boldsymbol{x}$ can be neglected in the denominator (5% rule) \rightarrow works if $\boldsymbol{C}_{\boldsymbol{B}}$ is relatively large and $\boldsymbol{K}_{\boldsymbol{b}}$ is small $\left(\boldsymbol{C}_{\boldsymbol{B}} / \boldsymbol{K}_{\boldsymbol{b}}>400\right)$

$$
K_{b}=x^{2} / C_{B} \quad x=\left(K_{b} C_{B}\right)^{1 / 2}=\left[\mathrm{OH}^{-}\right]
$$

Extent of Base Ionization

- Percent ionization

$$
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HB}^{+}+\mathrm{OH}^{-}
$$

$\rightarrow \boldsymbol{C}_{\boldsymbol{B}}=[\mathrm{B}]+\left[\mathrm{HB}^{+}\right] \quad \rightarrow \quad\left[\mathrm{HB}^{+}\right] \approx\left[\mathrm{OH}^{-}\right]$
$\rightarrow\left[\mathrm{HB}^{+}\right]=\boldsymbol{x}$ (ionized form of the base)
$\%$ ionized $=\frac{\left[\mathrm{HB}^{+}\right]}{C_{B}} \times 100=\frac{\left[\mathrm{OH}^{-}\right]}{C_{B}} \times 100=\frac{x}{C_{B}} \times 100$
$>$ For a given base, \% ionized decreases with increasing the total concentration of the base, $\boldsymbol{C}_{\boldsymbol{B}}$

$$
\uparrow C_{B} \Leftrightarrow \downarrow \% \text { dissociation }
$$

Finding $\boldsymbol{p} \boldsymbol{H}$ Given $\boldsymbol{K}_{\boldsymbol{b}}$

Example: What is the $\boldsymbol{p} \boldsymbol{H}$ of a $\mathbf{0 . 1 0} \mathrm{M} \mathrm{NH}_{3}$ solution? $\left(\boldsymbol{K}_{\boldsymbol{b}}=\mathbf{1 . 8} \times \mathbf{1 0}^{-5}\right.$ for $\left.\mathbf{N H}_{3}\right)$

Example: Calculate the \% ionization for two NH_{3} solutions with concentrations $\mathbf{0 . 1 0}$ and $\mathbf{1 . 0} \mathrm{M} .\left(\boldsymbol{K}_{b}=\right.$ $\mathbf{1 . 8} \times \mathbf{1 0}^{-5}$ for NH_{3})
\rightarrow For the $\mathbf{0 . 1 0} \mathrm{M} \mathrm{NH}_{3}$ from the previous example:
$\boldsymbol{x}=\left(K_{b} C_{N H 3}\right)^{1 / 2}=\left(1.8 \times 10^{-5} \times 0.10\right)^{1 / 2}=1.3 \times 10^{-3}=\left[\mathrm{OH}^{-}\right]$
\% ionized $=\left(1.3 \times 10^{-3} / 0.10\right) \times 100=\mathbf{1 . 3} \%$
\rightarrow For the $\mathbf{1 . 0} \mathbf{M ~ N H}_{3}$ similarly:
$\boldsymbol{x}=\left(K_{b} C_{N H 3}\right)^{1 / 2}=\left(1.8 \times 10^{-5} \times 1.0\right)^{1 / 2}=4.2 \times 10^{-3}=\left[\mathrm{OH}^{-}\right]$
$\%$ ionized $=\left(4.2 \times 10^{-3} / 1.0\right) \times 100=\mathbf{0 . 4 2 \%}$
\Rightarrow Increasing the concentration from 0.10 to 1.0 M decreases the $\%$ ionized from 1.3 to 0.42%

Anions of Weak Acids as Weak Bases

- The anion of the weak acid (HA) is its conjugate base (A^{-})
- A^{-}reacts as a weak base in water:

$$
\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HA}+\mathrm{OH}^{-} \quad \boldsymbol{K}_{b}=\frac{[\mathbf{H A}]\left[\mathbf{O H}^{-}\right]}{\left[\mathbf{A}^{-}\right]}
$$

- A^{-}can be produced in solution by means of the soluble salt, MA, which dissociates completely: $\mathrm{MA}(\mathrm{s}) \rightarrow \mathrm{M}^{+}+\mathrm{A}^{-} \quad\left(\mathrm{M}^{+}\right.$is a spectator ion)
Example: For an aqueous solution of KF

$$
\begin{gathered}
\mathrm{KF}(\mathrm{~s}) \rightarrow \mathrm{K}^{+}+\mathrm{F}^{-} \\
\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HF}+\mathrm{OH}^{-} \\
\hline
\end{gathered}
$$

$>\mathrm{HA}$ and A^{-}are present in both, solutions of the weak acid HA , and solutions of its anion A^{-}
Solutions of HA: $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$
Solutions of A: $A^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HA}+\mathrm{OH}^{-}$
$>$ Both equilibria are shifted to the left so
$>$ Solutions of HA are acidic $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$and $[\mathrm{HA}] \gg[\mathrm{A}]$
$>$ Solutions of A- are basic (OH^{-}) and $\left[\mathrm{A}^{-}\right] \gg[\mathrm{HA}]$
$>\mathrm{HA}$ and A^{-}are a conjugate acid base pair so
$\boldsymbol{K}_{\boldsymbol{a}}(\mathrm{HA}) \times \boldsymbol{K}_{\boldsymbol{b}}\left(\mathrm{A}^{-}\right)=\boldsymbol{K}_{w} \quad \rightarrow \quad \boldsymbol{K}_{\boldsymbol{b}}\left(\mathrm{A}^{-}\right)=\boldsymbol{K}_{w} / \boldsymbol{K}_{\boldsymbol{a}}(\mathrm{HA})$
$>$ Equilibrium calculations for A^{-}are carried out using the same method as for the neutral base B

$$
K_{b}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}=\frac{x^{2}}{C_{A^{-}}-x}
$$

Example: What is the $\boldsymbol{p} \boldsymbol{H}$ of a $\mathbf{0 . 1 0} \mathrm{M} \mathrm{KF}$
solution? $\left(K_{a}=\mathbf{6 . 8} \times \mathbf{1 0}^{-4}\right.$ for HF)
$\rightarrow \mathrm{KF}(\mathrm{s}) \rightarrow \mathrm{K}^{+}+\mathrm{F}^{-} \rightarrow \boldsymbol{C}_{\boldsymbol{F}^{-}}=\mathbf{0 . 1 0} \mathrm{M}$

[]	$\mathbf{F}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HF}+\mathrm{OH}^{-}$			$K_{b}=\underline{[\mathrm{HF}][\mathrm{OH}}$
i	0.10	0	0	[F]
c	-x	$+x$	$+x$	K
e	0.10-x	x	x	$\frac{10-\boldsymbol{x}}{0.10} \sim$

$\rightarrow \boldsymbol{K}_{b}(\mathrm{~F})=\boldsymbol{K}_{\boldsymbol{w}} / \boldsymbol{K}_{\boldsymbol{a}}(\mathrm{HF})=1.0 \times 10^{-14} / 6.8 \times 10^{-4}=1.5 \times 10^{-11}$
$\Rightarrow \boldsymbol{x}=\left(K_{b} \times 0.10\right)^{1 / 2}=\left(1.5 \times 10^{-11} \times 0.10\right)^{1 / 2}=1.2 \times 10^{-6}=\left[\mathrm{OH}^{-}\right]$
$\Rightarrow \boldsymbol{p O H}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(1.2 \times 10^{-6}\right)=5.92$
$\Rightarrow \boldsymbol{p H}=14.00-\boldsymbol{p} \boldsymbol{O H}=14.00-5.92=\mathbf{8 . 0 8} \quad$ (basic)
[Check assumption: $\left(1.2 \times 10^{-6} / 0.10\right) \times 100=0.0012 \%<5 \%$]

Example: What is the $\boldsymbol{p} \boldsymbol{H}$ of a $\mathbf{0 . 1 0} \mathrm{M} \mathrm{NH}_{4} \mathrm{I}$
solution? $\left(\boldsymbol{K}_{\boldsymbol{b}}=\mathbf{1 . 8} \times \mathbf{1 0}^{-\mathbf{5}}\right.$ for $\left.\mathrm{NH}_{3}\right)$
$\rightarrow \mathrm{NH}_{4} \mathrm{I}(\mathrm{s}) \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{I}^{-} \quad \rightarrow \boldsymbol{C}_{\mathrm{NH}_{4}}=\mathbf{0 . 1 0} \mathbf{M}$

$\boldsymbol{K}_{\boldsymbol{a}}\left(\mathrm{NH}_{4}^{+}\right)=\boldsymbol{K}_{w} / \boldsymbol{K}_{\boldsymbol{b}}\left(\mathrm{NH}_{3}\right)=1.0 \times 10^{-14} / 1.8 \times 10^{-5}=5.6 \times 10^{-10}$
$\Rightarrow \boldsymbol{x}=\left(K_{a} \times 0.10\right)^{1 / 2}=\left(5.6 \times 10^{-10} \times 0.10\right)^{1 / 2}=7.5 \times 10^{-6}$
$\Rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=7.5 \times 10^{-6} \mathrm{M}$
$\Rightarrow \boldsymbol{p} \boldsymbol{H}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(7.5 \times 10^{-6}\right)=\mathbf{5 . 1 3}$ (acidic)
[Check assumption: $\left(7.5 \times 10^{-6} / 0.10\right) \times 100=0.0075 \%<5 \%$]

Cations of Weak Bases as Weak Acids

- The cation of the weak base (B) is its conjugate acid (HB^{+})
$-\mathrm{HB}^{+}$reacts as a weak acid in water:

$$
\mathrm{HB}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{B} \quad \boldsymbol{K}_{a}=\frac{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right][\mathbf{B}]}{\left[\mathbf{H B}^{+}\right]}
$$

$>\mathrm{HB}^{+}$and B are a conjugate acid-base pair so

$$
\boldsymbol{K}_{\boldsymbol{a}}\left(\mathrm{HB}^{+}\right) \times \boldsymbol{K}_{\boldsymbol{b}}(\mathrm{B})=\boldsymbol{K}_{\boldsymbol{w}} \quad \rightarrow \quad \boldsymbol{K}_{\boldsymbol{a}}\left(\mathrm{HB}^{+}\right)=\boldsymbol{K}_{\boldsymbol{w}} / \boldsymbol{K}_{\boldsymbol{b}}(\mathrm{B})
$$

$>$ Equilibrium calculations for HB^{+}are carried out using the same method as for the neutral acid HA

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{B}]}{\left[\mathrm{HB}^{+}\right]}=\frac{x^{2}}{C_{H B^{+}}-\boldsymbol{x}}
$$

18.6 Molecular Properties and Acid Strength

- Binary acids $\left(\mathrm{H}_{0} \mathrm{X}\right)$ - consist of H and a second element, $\mathrm{X}\left(\mathrm{HF}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \ldots\right)$
$>$ Acid strength increases across a period (the $\boldsymbol{E N}$ of X increases \rightarrow the $\mathrm{H}-\mathrm{X}$ bond becomes more polar \rightarrow greater $\delta+$ charge on the $\mathrm{H} \rightarrow$ greater attraction of the H to the O atom of $\mathrm{H}_{2} \mathrm{O}$)

$$
\delta-\mathrm{X}-\mathrm{H}^{\delta+}-----: \mathrm{OH}_{2} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{X}^{-}
$$

Example: $\mathrm{NH}_{3} \ll \mathrm{H}_{2} \mathrm{O}<\mathrm{HF}$
$>$ Acid strength increases down a group (X becomes larger \rightarrow the $\mathrm{H}-\mathrm{X}$ bond becomes longer and weaker \rightarrow the H^{+}comes off more easily)
Example: $\mathrm{HF} \ll \mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$

- Oxoacids $\left(\mathrm{H}_{\mathrm{n}} \mathrm{XO}_{\mathrm{m}}\right)$ - consist of H, O and a third element, $\mathrm{X}\left(\mathrm{HClO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}, \ldots\right)$
- The acidic H atoms are attached to O atoms
$>$ For oxoacids with the same \# of O atoms, acid strength increases with increasing the $E N$ of X (X withdraws electron density from the $\mathrm{O}-\mathrm{H}$ bond and makes it more polar \rightarrow greater $\delta+$ charge on the $\mathrm{H} \rightarrow$ the H^{+}comes off more easily)
Example: $\mathrm{HOI}<\mathrm{HOBr}<\mathrm{HOCl}$

$>$ For oxoacids having the same X , acid strength increases with increasing the $\#$ of O atoms (the high $\boldsymbol{E N}$ of O draws electron density from the $\mathrm{O}-\mathrm{H}$ bond and makes it more polar \rightarrow greater $\delta+$ charge on the $\mathrm{H} \rightarrow$ the H^{+}comes off more easily)
Example: $\mathrm{HClO}<\mathrm{HClO}_{2} \ll \mathrm{HClO}_{3}<\mathrm{HClO}_{4}$

$>$ Adding more $\boldsymbol{E N}$ atoms to the molecule increases the acidity further $\left(\mathbf{E x}: \mathrm{CH}_{3} \mathrm{COOH}<\mathrm{CF}_{3} \mathrm{COOH}\right)$

Acidity of Hydrated Metal Ions

- Metal ions are hydrated in water solutions - If the ion is small and highly charged (M^{2+} or M^{3+}, it draws electron density from the bound water molecules $\rightarrow \mathrm{H}^{+}$can be released \rightarrow acidic
Example: $\mathrm{AlCl}_{3}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+3 \mathrm{Cl}^{-}$ $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}+\mathrm{H}_{3} \mathrm{O}^{+}$

- Basic anions - act as weak bases in water
- The anions (conjugate bases) of weak acids (F^{-}, $\left.\mathrm{CN}^{-}, \mathrm{S}^{2-}, \mathrm{PO}_{4}{ }^{3-} \ldots\right) \rightarrow$ act as weak bases
- Neutral anions - do not influence the $\boldsymbol{p} \boldsymbol{H}$
- The anions (conjugate bases) of strong acids $\left(\mathrm{Cl}^{-}\right.$, $\mathrm{Br}, \mathrm{I}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{ClO}_{4}^{-} \ldots$) are extremely weak bases (weaker than $\mathrm{H}_{2} \mathrm{O}$) \rightarrow do not influence the $\boldsymbol{p} \boldsymbol{H}$
- Amphoteric anions of polyprotic acids - can act as weak acids or bases in water
- Anions with ionizable protons $\left(\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}, \mathrm{HPO}_{4}{ }^{2-}\right.$, $\left.\mathrm{HS}, \mathrm{HSO}_{3}^{-}, \mathrm{HSO}_{4}^{-}\right) \rightarrow$ act as either weak acids or weak bases depending on the relative values of their \boldsymbol{K}_{a} and \boldsymbol{K}_{b} constants)

Example: $\mathrm{FeCl}_{3}(\mathrm{~s}) \rightarrow \mathrm{Fe}^{3+}+3 \mathrm{Cl}^{-} \quad$ (acidic solution)
$\mathrm{Fe}^{3+} \rightarrow$ acidic cation (highly charged, small cation)
$\mathrm{Cl}^{-} \rightarrow$ neutral anion (anion of a strong acid, HCl)
$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}$
$>$ Salts of neutral cations and basic anions yield basic solutions
Example: $\mathrm{Na}_{2} \mathrm{~S}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}^{+}+\mathrm{S}^{2-} \quad$ (basic solution)
$\mathrm{Na}^{+} \rightarrow$ neutral cation (cation of a strong base, NaOH)
$\mathrm{S}^{2-} \rightarrow$ basic anion (anion of a weak acid, $\mathrm{H}_{2} \mathrm{~S}$)

$$
\mathrm{S}^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HS}^{-}+\mathrm{OH}^{-}
$$

Example: $\mathrm{KF}(\mathrm{s}) \rightarrow \mathrm{K}^{+}+\mathrm{F}^{-} \quad$ (basic solution)
$\mathrm{K}^{+} \rightarrow$ neutral cation $\quad \mathrm{F}^{-} \rightarrow$ basic anion

18.7 Acid-Base Properties of Salt Solutions

- The acidity (basicity) of salt solutions depends on the acid-base properties of their ions
- Acidic cations - act as weak acids in water - The cations (conjugate acids) of weak bases $\left(\mathrm{NH}_{4}{ }^{+}, \mathrm{CH}_{3} \mathrm{NH}_{2}{ }^{+}, \ldots\right) \rightarrow$ act as weak acids
- Small, highly charged metal cations $\left(\mathrm{Al}^{3+}, \mathrm{Fe}^{3+}\right.$, $\left.\mathrm{Cr}^{3+}, \mathrm{Cu}^{2+}, \ldots\right) \rightarrow$ act as weak acids
- Neutral cations - do not influence the $\boldsymbol{p H}$
- The cations of strong bases (Group I, $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, $\left.\mathrm{Ba}^{2+}\right)$ and metal cations with +1 charge $\left(\mathrm{Ag}^{+}\right.$, Cu^{+}, \ldots) are extremely weak acids (weaker than $\left.\mathrm{H}_{2} \mathrm{O}\right) \rightarrow$ do not influence the $\boldsymbol{p} \boldsymbol{H}$

$>$ Salts of neutral cations and neutral anions yield neutral solutions

Example: $\mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-} \quad$ (neutral solution)
$\mathrm{Na}^{+} \rightarrow$ neutral cation (cation of a strong base, NaOH)
$\mathrm{Cl}^{-} \rightarrow$ neutral anion (anion of a strong acid, HCl)
$>$ Salts of acidic cations and neutral anions yield acidic solutions
Example: $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightarrow \mathrm{NH}_{4}{ }^{+}+\mathrm{Cl}^{-} \quad$ (acidic solution) $\mathrm{NH}_{4}^{+} \rightarrow$ acidic cation (cation of a weak base, NH_{3}) $\mathrm{Cl}^{-} \rightarrow$ neutral anion (anion of a strong acid, HCl)

$$
\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{3}
$$

$>$ Salts of acidic cations and basic anions yield either acidic or basic solutions
$>$ If \boldsymbol{K}_{a} of the cation is larger than \boldsymbol{K}_{b} of the anion, the solution is acidic (cation is a stronger acid)
$>$ If \boldsymbol{K}_{a} of the cation is smaller than $\boldsymbol{K}_{\boldsymbol{b}}$ of the anion, the solution is basic (anion is a stronger base)
Example: $\mathrm{NH}_{4} \mathrm{~F}(\mathrm{~s}) \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{F}^{-}$
$\mathrm{NH}_{4}^{+} \rightarrow$ acidic cation (cation of a weak base, NH_{3})
$\mathrm{F}^{-} \rightarrow$ basic anion (anion of a weak acid, HF)
$\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{3} \quad \boldsymbol{K}_{\boldsymbol{a}}\left(\mathrm{NH}_{4}{ }^{+}\right)=5.7 \times 10^{-10}$
$\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HF}+\mathrm{OH}^{-}$
$\boldsymbol{K}_{\boldsymbol{b}}(\mathrm{F})=1.5 \times 10^{-11}$
$\boldsymbol{K}_{\boldsymbol{a}}\left(\mathrm{NH}_{4}^{+}\right)>\boldsymbol{K}_{\boldsymbol{b}}\left(\mathrm{F}^{-}\right) \Rightarrow \mathrm{NH}_{4}^{+}$is a stronger acid than F^{-} is a base \Rightarrow the solution is slightly acidic

Salts of neutral cations and amphoteric

 anions yield either acidic or basic solutions$>$ If \boldsymbol{K}_{a} of the anion is larger than its \boldsymbol{K}_{b}, the solution is acidic (the anion is a stronger acid)
$>$ If \boldsymbol{K}_{a} of the anion is smaller than its \boldsymbol{K}_{b}, the solution is basic (the anion is a stronger base)
Example: Predict whether solutions of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and $\mathrm{K}_{2} \mathrm{HPO}_{4}$ are acidic, basic or neutral.
$\mathrm{KH}_{2} \mathrm{PO}_{4} \rightarrow \mathrm{~K}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
$\mathrm{K}^{+} \rightarrow$ neutral cation (cation of a strong base, KOH) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \rightarrow$ amphoteric anion ???
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HPO}_{4}{ }^{2-} \quad \boldsymbol{K}_{\boldsymbol{a}}\left(\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right)$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{OH}^{-} \quad \boldsymbol{K}_{\boldsymbol{b}}\left(\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right)$

18.8 The Lewis Acid-Base Definition

- Acids - electron pair acceptors
- Bases - electron pair donors
- The Lewis acid-base definition does not require the exchange of a proton (Lewis acids don't have to have H in their formulas)
- Expands the scope of possible acids
$-\mathrm{H}^{+}$itself is a Lewis acid since it accepts an e^{-}pair from a base ($\mathrm{H}^{+}+: \mathrm{B} \leftrightarrow \mathrm{H}-\mathrm{B}^{+}$)
\Rightarrow All B-L acids donate a Lewis acid $\left(\mathrm{H}^{+}\right)$
- Lewis bases must contain an e^{-}pair to donate
- Lewis acids must have a vacant orbital in order to accept the e^{-}pair from the base

$\boldsymbol{K}_{\boldsymbol{a}}\left(\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right)=\boldsymbol{K}_{\boldsymbol{a} 2}\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)=6.3 \times 10^{-8}$	
$\boldsymbol{K}_{\boldsymbol{b}}\left(\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right)=\boldsymbol{K}_{\boldsymbol{w}} / \boldsymbol{K}_{\boldsymbol{a} \boldsymbol{I}}\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)=10^{-14} 7.2 \times 10^{-3}=1.4 \times 10^{-12}$	
$\boldsymbol{K}_{\boldsymbol{a}}\left(\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right) \gg \boldsymbol{K}_{\boldsymbol{b}}\left(\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right) \Rightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is a stronger acid than it is a base \Rightarrow the solution is acidic	
$\mathrm{K}_{2} \mathrm{HPO}_{4} \rightarrow 2 \mathrm{~K}^{+}+\mathrm{HPO}_{4}{ }^{2-}$	
$\mathrm{HPO}_{4}{ }^{2-} \rightarrow$ amphoteric anion ???	
$\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{PO}_{4}{ }^{3-}$	$\boldsymbol{K}_{\boldsymbol{a}}\left(\mathrm{HPO}_{4}{ }^{\text {a }}\right.$)
$\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-}$	$\boldsymbol{K}_{\boldsymbol{b}}\left(\mathrm{HPO}_{4}{ }^{2-}\right)$
$\boldsymbol{K}_{\boldsymbol{a}}\left(\mathrm{HPO}_{4}{ }^{2-}\right)=\boldsymbol{K}_{\boldsymbol{a} 3}\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)=4.2 \times 10^{-13}$	
$\boldsymbol{K}_{\boldsymbol{a}}\left(\mathrm{HPO}_{4}{ }^{2-}\right) \ll \boldsymbol{K}_{\boldsymbol{b}}\left(\mathrm{HPO}_{4}{ }^{2-}\right) \Rightarrow \mathrm{H}$ base than it is an acid \Rightarrow the	a stronger is basic

- A Lewis acid-base reaction results in the
formation of a coordinate covalent bond
between the acid and the base
$\rightarrow \mathrm{A}-\mathrm{B}$ is called an adduct or a Lewis acid-base
complex
Lewis acids with electron deficient atoms -
have incomplete octets $(\mathrm{B}, \mathrm{Be}, \ldots)$

- Many metals act as Lewis acids in biomolecules (Fe in hemoglobin, Mg in chlorophyll, ...)
- The Lewis definition has the widest scope of the three acid-base definitions, while the Arrhenius definition has the narrowest scope

Examples:

$\rightarrow \mathrm{BF}_{3}$ is a Lewis acid but not a B-L or Arrhenius acid $\rightarrow \mathrm{F}^{-}$is a Lewis and B-L base but not an Arrhenius

