Ionic Equilibria in Aqueous Systems

19.1 Acid-Base Buffers

- Resist changes in $\boldsymbol{p H}$ upon addition of acids $\left(\mathrm{H}^{+}\right)$ or bases (OH^{-})

The Buffer Action

- Buffer solutions consist of to components
- Acid component - reacts with added bases $\left(\mathrm{OH}^{-}\right)$
- Base component - reacts with added acids $\left(\mathrm{H}^{+}\right)$
- The two components must be a conjugate acidbase pair
- The two components must be present in high concentrations

The $\boldsymbol{p H}$ of a Buffer

- For a weak acid buffer (HA/A-), A^{-}can be supplied in solution by means of the salt, MA $\mathrm{MA} \rightarrow \mathrm{M}^{+}+\mathrm{A}^{-}$
- HA and A^{-}reach equilibrium

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}
$$

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \Rightarrow\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]=K_{a} \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}
$$

\Rightarrow The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\boldsymbol{p} \boldsymbol{H}$ depend on the ratio $[\mathbf{H A}] /\left[\mathbf{A}^{-}\right]$ \rightarrow If [HA] and $\left[\mathrm{A}^{-}\right]$are relatively large, adding small amounts of $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}changes the ratio only slightly, so $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \approx$ constant
\rightarrow Take a $-\log ()$ of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{a}\left(C_{a} / C_{b}\right)$
$-\log \left[\mathbf{H}_{3} \mathbf{O}^{+}\right]=-\log \boldsymbol{K}_{a}-\log \frac{\boldsymbol{C}_{a}}{\boldsymbol{C}_{b}}=-\log \boldsymbol{K}_{a}+\log \frac{\boldsymbol{C}_{b}}{\boldsymbol{C}_{a}}$ $\Rightarrow p H=p K_{a}+\log \frac{C_{b}}{C_{a}} \quad \begin{aligned} & \text { Henderson-Hasselbalch } \\ & \text { Equation }\end{aligned}$
\rightarrow The equation is valid only if C_{a} and C_{b} are large enough so that the assumptions [HA] $\approx C_{a}$ and [A-] $\approx C_{b}$ are justified; If not, [HA] and [A ${ }^{-}$] must be used \rightarrow Works if $\boldsymbol{C}_{a}>\mathbf{1 0 0} \times \boldsymbol{K}_{a}$ and $\boldsymbol{C}_{b}>\mathbf{1 0 0} \times \boldsymbol{K}_{b}$ \rightarrow If $\boldsymbol{C}_{\boldsymbol{a}}=\boldsymbol{C}_{\boldsymbol{b}}, \log \left(C_{a} / C_{b}\right)=0$ and $\boldsymbol{p} \boldsymbol{H}=\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a}}$ \Rightarrow If $\boldsymbol{C}_{\boldsymbol{a}}$ and $\boldsymbol{C}_{\boldsymbol{b}}$ are comparable, the $\boldsymbol{p} \boldsymbol{H}$ of the buffer is close to the $\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a}}$ of the acid component
$>$ Weak acid buffer - a solution of the weak acid,
HA , and its conjugate base, $\mathrm{A}^{-}\left(\mathrm{HF} / \mathrm{F}^{-}, \ldots\right.$)
$>$ Add $\mathrm{H}_{3} \mathrm{O}^{+}($acid $) \rightarrow\left(\mathrm{A}^{-}\right.$consumes the added $\left.\mathrm{H}_{3} \mathrm{O}^{+}\right)$ $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HA}$
$>$ Add OH^{-}(base) \rightarrow (HA consumes the added OH^{-}) $\mathrm{OH}^{-}+\mathrm{HA} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{A}^{-}$
$>$ Weak base buffer - a solution of the weak base, B, and its conjugate acid, $\mathrm{HB}^{+}\left(\mathrm{NH}_{4}{ }^{+} / \mathrm{NH}_{3}, \ldots\right)$
$>$ Add $\mathrm{H}_{3} \mathrm{O}^{+}($acid $) \rightarrow\left(\mathrm{B}\right.$ consumes the added $\left.\mathrm{H}_{3} \mathrm{O}^{+}\right)$
$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{B} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HB}^{+}$
$>$ Add $\mathrm{OH}^{-}($base $) \rightarrow\left(\mathrm{HB}^{+}\right.$consumes the added $\left.\mathrm{OH}^{-}\right)$ $\mathrm{OH}^{-}+\mathrm{HB}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{B}$
\Rightarrow The addition of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}changes the relative amounts of the buffer components ($\mathrm{HA} / \mathrm{A}^{-}$or $\mathrm{HB}^{+} / \mathrm{B}$)

- Both HA and A- react with water

1. $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$
2. $\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{OH}^{-}+\mathrm{HA}$
\rightarrow Both equilibria are shifted to the left, so the amounts of HA and A- produced are often very small compared to the total concentrations, $C_{H A}$ and $C_{A^{-}}$ \Rightarrow Assume that $[\mathrm{HA}]_{2}$ and $\left[\mathrm{A}^{-}\right]_{1} \ll C_{H A}$ and $C_{A^{-}}$ $[\mathrm{HA}]=C_{H A}-\left[\mathrm{A}^{-}\right]_{1}+[\mathrm{HA}]_{2} \approx C_{H A}=\boldsymbol{C}_{\boldsymbol{a}}$ $\left[\mathrm{A}^{-}\right]=C_{A^{-}}-\left[\mathrm{HA}_{2}+\left[\mathrm{A}^{-}\right]_{1} \approx C_{A^{-}}=\boldsymbol{C}_{\boldsymbol{b}}\right.$
$\rightarrow \boldsymbol{C}_{a}$ and $\boldsymbol{C}_{\boldsymbol{b}}$ - total concentrations of the acid and base components of the buffer

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{a} \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]} \quad \Rightarrow \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{a} \frac{C_{a}}{C_{b}}
$$

Example: What is the $\boldsymbol{p H}$ of a buffer that is $\mathbf{0 . 5 0}$ \mathbf{M} in HF and $\mathbf{0 . 5 0} \mathbf{M}$ in KF ? $\left(\boldsymbol{K}_{\boldsymbol{a}}=6.8 \times 10^{-4}\right.$ for HF$)$

1. Use the Hend.-Hass. Eq. (HF - acid; F- - base)

$$
\boldsymbol{C}_{\boldsymbol{a}}=0.50 \quad \boldsymbol{C}_{\boldsymbol{b}}=0.50
$$

$\boldsymbol{p} \boldsymbol{H}=\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a}}+\log (0.50 / 0.50)=\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a}}+\log (1)=\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a}}+0$
$\boldsymbol{p} \boldsymbol{H}=\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a}}=-\log \left(6.8 \times 10^{-4}\right)=\mathbf{3 . 1 7}$
2. Or use an ice table

[]	$\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$			$K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right]}{[\mathrm{HF}]}=$	
i	0.50	0	0.50		
c	-x	+ x	+ x	$x(0.50+x)$	$x(0.50)$
e	0.50-x	x	$0.50+x$	(0.50-x)	(0.50)
$\boldsymbol{x}=\boldsymbol{K}_{\boldsymbol{a}}=6.8 \times 10^{-4}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \Rightarrow \boldsymbol{p} \boldsymbol{H}=-\log \left(6.8 \times 10^{-4}\right)=\mathbf{3 . 1 7}$					

Example: For $\mathbf{1 . 0} \mathbf{L}$ of the same buffer, calculate the $\boldsymbol{p} \boldsymbol{H}$ after the addition of $\mathbf{5 . 0} \mathbf{~ m L} \mathbf{2 . 0} \mathbf{M ~ H C l}$.
$\rightarrow \mathrm{HCl}$ is a strong acid and converts to $\mathrm{H}_{3} \mathrm{O}^{+}$which reacts with F^{-}from the buffer
\rightarrow Calculate the starting moles of HF and F^{-}in the buffer and the added moles of $\mathrm{H}_{3} \mathrm{O}^{+}$from HCl
$\mathrm{HF} \quad \rightarrow 1.0 \mathrm{~L} \times 0.50 \mathrm{~mol} / \mathrm{L}=\mathbf{0 . 5 0} \mathbf{~ m o l}$ $\mathrm{F}^{-} \quad \rightarrow 1.0 \mathrm{~L} \times 0.50 \mathrm{~mol} / \mathrm{L}=\mathbf{0 . 5 0} \mathbf{~ m o l}$ $\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow 0.0050 \mathrm{~L} \times 2.0 \mathrm{~mol} / \mathrm{L}=\mathbf{0 . 0 1 0} \mathbf{~ m o l}$ \rightarrow Use an "srf" table (starting, reacted, final) to calculate the final moles of HF and F^{-}

- The addition of strong acids or bases to unbuffered solutions has a much greater effect on $\boldsymbol{p H}$

Example: Calculate the $\boldsymbol{p} \boldsymbol{H}$ after the addition of $5.0 \mathbf{m L} 2.0 \mathrm{M} \mathrm{HCl}$ to 1.0 L of pure water .
\rightarrow The $\boldsymbol{p} \boldsymbol{H}$ of pure water is $\mathbf{7 . 0 0}$
\rightarrow After addition of the strong acid HCl :

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{0.0050 \mathrm{~L} \times \frac{2.0 \mathrm{~mol}}{1 \mathrm{~L}}}{(1.0+0.0050) \mathrm{L}}=0.010 \mathrm{M}} \\
& p H=-\log (0.010)=2.00
\end{aligned}
$$

\Rightarrow The $\boldsymbol{p H}$ is reduced by 5.00 pH -units (a much larger change compared to the buffered solution)

Preparing Buffers

$>$ Choose the conjugate acid-base pair (select a pair with an acid component having $\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a}}$ close to the desired buffer $\boldsymbol{p H}$)
$>$ Calculate the ratio of $\boldsymbol{C}_{b} / \boldsymbol{C}_{a}$ needed to achieve the desired buffer $\boldsymbol{p} \boldsymbol{H}$ (use the Hend.-Hass. Eq.)
$>$ Determine the buffer concentration and the amounts of the two components to be mixed
$>$ Mix the components and adjust the $\mathbf{p H}$ (final pH may be slightly off and can be adjusted by adding strong acid or base)
$>$ Buffers can also be prepared by partial neutralization of weak acids (or bases) with strong bases (or acids) (Ex: $\mathrm{HF}+\mathrm{KOH} \rightarrow \mathrm{KF}+\mathrm{H}_{2} \mathrm{O}$; If only half of the HF is converted to $\mathrm{KF} \rightarrow$ buffer)

$\begin{aligned} & \text { n } \\ & 0 \\ & \vdots \end{aligned}$	[]	$\mathrm{F}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HF}$			
	s	0.50	0.010	-	0.50
	r	-0.010	-0.010	-	+0.010
	f	0.49	0.00	-	0.51

\rightarrow Use the Hend.-Hass. Eq. (HF - acid; F- - base)
\rightarrow Since the acid an base components of the buffer are in the same volume, the ratio of the concentrations is the same as the ratio of the moles $\rightarrow \boldsymbol{C}_{b} / \boldsymbol{C}_{\boldsymbol{a}}=\boldsymbol{n}_{b} / \boldsymbol{n}_{\boldsymbol{a}}$

$$
\begin{aligned}
p H & =p K_{a}+\log \frac{n_{b}}{n_{a}}=-\log \left(6.8 \times 10^{-4}\right)+\log \frac{0.49}{0.51} \\
& =3.17+(-0.02)=3.15
\end{aligned}
$$

\Rightarrow The $\boldsymbol{p H}$ is reduced by only 0.02 pH -units

Buffer Capacity and Buffer Range

- Buffer capacity (BC) - a measure of the ability of the buffer to resist $\boldsymbol{p} \boldsymbol{H}$ changes $-\boldsymbol{B C}$ is higher for more concentrated buffers $\uparrow \uparrow C_{a}$ and $C_{b} \Rightarrow \uparrow \uparrow$ Buffer capacity $-\boldsymbol{B C}$ is higher for buffers with similar component concentrations ($\boldsymbol{B C}$ is highest when $\boldsymbol{C}_{\boldsymbol{a}}=\boldsymbol{C}_{\boldsymbol{b}}$)
- Buffer range ($\boldsymbol{B R}$) - buffers act most efficiently when $\boldsymbol{C}_{b} / \boldsymbol{C}_{\boldsymbol{a}}$ is between $\mathbf{0 . 1}$ and $\mathbf{1 0}$ $\begin{aligned} & p H=p K_{a}+\log (0.1)=p K_{a}-1 \\ & p H=p K_{a}+\log (10)=p K_{a}+1\end{aligned} \Rightarrow B R=p K_{a} \pm 1$

Example: How many moles of $\mathrm{NH}_{4} \mathrm{Cl}$ must be added to $\mathbf{1 . 0} \mathbf{L}$ of $\mathbf{0 . 2 0} \mathbf{M ~ N H}_{3}$ solution to get a buffer with $\boldsymbol{p} \boldsymbol{H}=\mathbf{9 . 3 5}$? $\left(\boldsymbol{K}_{\boldsymbol{b}}=\mathbf{1 . 8} \times \mathbf{1 0}^{-5}\right.$ for $\left.\mathrm{NH}_{3}\right)$
\rightarrow Conjugate pair $\mathbf{N H}_{4}{ }^{+} / \mathbf{N H}_{3}$

19.2 Acid-Base Titration Curves

- Titration curves - plots of $\boldsymbol{p H}$ versus the volume of titrant added during titration
- Equivalence point (E) - a point along the course of the titration at which the acid and the base are present in equivalent (stoichiometric) amounts and consume each other completely
- Typically, the $\boldsymbol{p} \boldsymbol{H}$ changes sharply at the E-point and this fact is used in the detection of the E-point
- The titration is actually stopped at the end point
- Ideally, the end point should be at the equivalence point, but in practice they can differ slightly due to imperfect detection of the E-point
$>$ The indicator is a weak B-L acid

$$
\mathrm{HIn}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{In}^{-}
$$

- The acid form of the indicator, HIn, and its conjugate base, In^{-}, have different colors
- If $[\mathbf{H I n}] /\left[\mathbf{I n}^{n}\right]>10$, the solution has the color of the acid form, HIn
- If $[\mathbf{H I n}] /\left[\mathbf{I n}^{-}\right]<\mathbf{0 . 1}$, the solution has the color of the base form, In^{-}
\Rightarrow The color change is within $\mathbf{0 . 1}<[\mathbf{H I n}] /[\mathbf{I n}]<\mathbf{1 0}$
\Rightarrow The ratio $[\mathbf{H I n}] /[\mathbf{I n}]$ depends on $\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]$

$$
K_{I n}=\frac{\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]\left[\mathrm{In}^{-}\right]}{[\mathrm{HIn}]} \Rightarrow \frac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]}=\frac{\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]}{K_{I n}}
$$

Acid-Base Indicators

- Indicators - used to estimate the $\boldsymbol{p} \boldsymbol{H}$ of solutions and to detect the E-point in titrations
- Weak organic acids with general formula HIn
- Exhibit different colors at different $\boldsymbol{p H}$ values
- The colors are quite intense so only small amounts are needed for detection
- Indicator rage - a relatively narrow $\boldsymbol{p H}$ range over which the indicator changes color
- If the \mathbf{E}-point is within (or close to) the indicator range, the indicator changes color very close to \mathbf{E}
\Rightarrow The $\boldsymbol{p} \boldsymbol{H}$ at the \mathbf{E}-point must be known for the proper selection of an indicator

Strong Acid-Strong Base Titration Curves

$>$ Strong acids and bases are completely converted to $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}in water solns.
\Rightarrow The net ionic equation of the titration is:

$$
\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

\Rightarrow At the \mathbf{E}-point, $\boldsymbol{p H}=7.00$ (neutral)
To calculate the $\boldsymbol{p} \boldsymbol{H}$ during the titration:

1. Calculate the $\mathbf{m m o l}$ of $\mathbf{H}_{3} \mathbf{O}^{+}$from the acid
2. Calculate the $\mathbf{m m o l}$ of $\mathbf{O H}^{-}$from the base
3. Calculate the excess mmol of $\mathbf{H}_{3} \mathbf{O}^{+}$or $\mathbf{O H}^{-}$from the difference between (1) and (2)
4. Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$from the excess and the total volume of the solution $\left(\boldsymbol{V}_{\text {tot }}\right) \rightarrow$ convert to $\boldsymbol{p H}$

Example: Calculate the $\boldsymbol{p} \boldsymbol{H}$ during the titration of $\mathbf{4 0 . 0} \mathbf{~ m L ~} \mathbf{0 . 1 0 0} \mathbf{M ~ H C l}$ with $\mathbf{0 . 1 0 0} \mathbf{M ~ N a O H}$ after the addition of $\mathbf{2 5 . 0} \mathbf{~ m L ~ N a O H}$.
$0.100 \mathrm{M} \mathrm{HCl} \rightarrow 0.100 \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}=0.100 \mathrm{mmol} / \mathrm{mL}$
$0.100 \mathrm{M} \mathrm{NaOH} \rightarrow 0.100 \mathrm{M} \mathrm{OH}^{-}=0.100 \mathrm{mmol} / \mathrm{mL}$

1. $\mathbf{H}_{3} \mathbf{O}^{+} \rightarrow 40.0 \mathrm{~mL} \times 0.100 \mathrm{mmol} / \mathrm{mL}=\mathbf{4 . 0 0} \mathbf{~ m m o l}$
2. $\mathbf{O H}^{-} \rightarrow 25.0 \mathrm{~mL} \times 0.100 \mathrm{mmol} / \mathrm{mL}=\mathbf{2 . 5 0} \mathbf{~ m m o l}$
3. Excess acid $=4.00-2.50=\mathbf{1 . 5 0} \mathbf{~ m m o l ~} \mathbf{H}_{\mathbf{3}} \mathbf{O}^{+}$
4. $\boldsymbol{V}_{\text {tot }}=40.0+25.0=\mathbf{6 5 . 0} \mathbf{~ m L}$
$1.50 \mathrm{mmol} / 65.0 \mathrm{~mL}=\mathbf{0 . 0 2 3 1} \mathbf{M ~ H}_{3} \mathbf{O}^{+}$
$\boldsymbol{p} \boldsymbol{H}=-\log (0.0231)=\mathbf{1 . 6 4}$ (acidic, before E-point)

Example: Calculate the $\boldsymbol{p H}$ during the titration of $\mathbf{2 0 . 0} \mathbf{~ m L ~} \mathbf{0 . 5 0 0} \mathbf{M ~ H C l}$ with $\mathbf{0 . 2 5 0} \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ after the addition of $\mathbf{2 1 . 0} \mathbf{~ m L ~ B a}(\mathrm{OH})_{2}$
$0.500 \mathrm{M} \mathrm{HCl} \rightarrow 0.500 \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}$
$0.250 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2} \rightarrow 0.500 \mathrm{M} \mathrm{OH}^{-}!!!$

1. $\mathbf{H}_{\mathbf{3}} \mathbf{O}^{+} \rightarrow 20.0 \mathrm{~mL} \times 0.500 \mathrm{mmol} / \mathrm{mL}=\mathbf{1 0 . 0} \mathbf{~ m m o l}$
2. $\mathbf{O H}^{-} \rightarrow 21.0 \mathrm{~mL} \times 0.500 \mathrm{mmol} / \mathrm{mL}=\mathbf{1 0 . 5} \mathbf{~ m m o l}$
3. Excess base $=10.5-10.0=\mathbf{0 . 5 0} \mathbf{~ m m o l} \mathbf{O H}^{-}$
4. $\boldsymbol{V}_{\text {tot }}=20.0+21.0=\mathbf{4 1 . 0} \mathbf{~ m L}$
$0.50 \mathrm{mmol} / 41.0 \mathrm{~mL}=\mathbf{0 . 0 1 2} \mathbf{~ M ~ O H}^{-}$
$\boldsymbol{p O H}=-\log (0.012)=\mathbf{1 . 9 1}$
$\boldsymbol{p} \boldsymbol{H}=14.00-1.91=\mathbf{1 2 . 0 9}$ (basic, after E-point)

Example: Calculate the $\boldsymbol{p} \boldsymbol{H}$ during the titration of $\mathbf{2 0 . 0} \mathbf{~ m L} \mathbf{0 . 5 0 0} \mathbf{M ~ H C O O H}$ with $\mathbf{0 . 5 0 0} \mathbf{M ~ N a O H}$ after the addition of $\mathbf{0 . 0}, \mathbf{1 0 . 0}, \mathbf{1 9 . 0}, \mathbf{2 0 . 0}$ and $\mathbf{2 1 . 0}$ $\mathbf{m L ~ N a O H}$

1) $\mathbf{0 . 0} \mathbf{~ m L ~ N a O H}$ added (Initial point):
$\rightarrow \mathrm{A} 0.500 \mathrm{M}$ solution of the weak acid HCOOH

Example: Calculate the $\boldsymbol{p H}$ during the titration of $\mathbf{2 0 . 0} \mathbf{~ m L} \mathbf{0 . 5 0 0} \mathbf{M ~ H C O O H}$ with $\mathbf{0 . 5 0 0} \mathbf{~ M ~ N a O H}$ after the addition of $\mathbf{0 . 0}, \mathbf{1 0 . 0}, \mathbf{1 9 . 0}, \mathbf{2 0 . 0}$ and $\mathbf{2 1 . 0}$ $\mathbf{m L ~ N a O H}$				
1) $\mathbf{0 . 0} \mathbf{~ m L ~ N a O H ~ a d d e d ~ (I n i t i a l ~ p o i n t) : ~}$				
\rightarrow A 0.500 M solution of the weak acid HCOOH				
$\mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCOO}^{-}$			$K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{HCOO}}{}{ }^{-}$	
i $\mathbf{0 . 5 0 0}$	0	0		
c-x	$+x$			
e 0.500-x		x		
$\boldsymbol{x}=\left(0.500 K_{a}\right)^{1 / 2}=\left(1.8 \times 10^{-4} \times 0.500\right)^{1 / 2}=9.5 \times 10^{-3}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$				
$\Rightarrow \boldsymbol{p} \boldsymbol{H}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(9.5 \times 10^{-3}\right)=\mathbf{2 . 0 2}$				

$>$ A titration curve for the titration of a strong base with a strong acid looks like a mirror image of that for the titration of a strong acid with a strong base

- Characteristics of strong acid-strong base \mathbf{t}-curves
- Slow $\boldsymbol{p H}$ changes before and after the \mathbf{E}-point
- A sharp $\boldsymbol{p H}$ change at the \mathbf{E}-point $(\boldsymbol{p H}=7.00) \rightarrow 1-2$ drops cause a $\boldsymbol{p} \boldsymbol{H}$ change of $5-6 \mathrm{pH}$ units)
- The vertical region of the t-curve is quite long (from $p H \approx 4$ to $p H \approx 10$)
- Any indicator having a range within the vertical region of the \mathbf{t}-curve can be used (the indicator range does not have to be at 7.00)
\Rightarrow Phenolphthalein (8.3-10), Methyl red (4.3-6.2), Phenol red (6.8-8.3), \ldots can all be used

Weak Acid-Strong Base Titration Curves

$>$ The strong base is completely converted to OH^{-}in water solution
\Rightarrow The net ionic equation of the titration is:

$$
\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{A}^{-}
$$

\Rightarrow At the \mathbf{E}-point, $\boldsymbol{p H}>\mathbf{7 . 0 0}$ (basic) due to the presence of \mathbf{A}^{-}which is a weak base
Regions of the titration curve:

1. Initial point \rightarrow solution of the weak acid HA
2. Before the E-point \rightarrow buffer solution of the weak acid, HA, and its conjugate base, A- (buffer region)
3. At the \mathbf{E}-point \rightarrow solution of the weak base \mathbf{A}^{-}
4. After the E-point \rightarrow excess of OH^{-}from base

2) $\mathbf{1 0 . 0} \mathbf{~ m L ~ N a O H ~ a d d e d ~ (H a l f - w a y ~ t o ~ t h e ~ E - p o i n t) : ~}$					
$0.500 \mathrm{M} \mathrm{HCOOH} \quad 0.500 \mathrm{M} \mathrm{NaOH} \rightarrow 0.500 \mathrm{M} \mathrm{OH}^{-}$					
$\mathbf{H C O O H} \rightarrow 20.0 \mathrm{~mL} \times 0.500 \mathrm{mmol} / \mathrm{mL}=\mathbf{1 0 . 0} \mathbf{~ m m o l}$ $\mathbf{O H}^{-} \rightarrow 10.0 \mathrm{~mL} \times 0.500 \mathrm{mmol} / \mathrm{mL}=\mathbf{5 . 0 0} \mathbf{~ m m o l}$					
$\mathrm{HCOOH}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HCOO}^{-}$					
-		10.0	5.00		0.00
		-5.00	-5.00		+5.0
		5.00	0.00		5.00
\rightarrow The system is a buffer ($\left.\mathrm{HCOOH} \rightarrow \boldsymbol{a}, \mathrm{HCOO}^{-} \rightarrow \boldsymbol{b}\right)$					
$\boldsymbol{p} \boldsymbol{H}=\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a}}+\log \left(\boldsymbol{n}_{\boldsymbol{b}} / \boldsymbol{n}_{\boldsymbol{a}}\right)=\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a}}+\log (5.00 / 5.00)=\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a}}+0$					
$\Rightarrow \boldsymbol{p H}=\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a}}=-\log \left(1.8 \times 10^{-4}\right)=\mathbf{3 . 7 4}$					
\Rightarrow Half-way to the E-point $\rightarrow \boldsymbol{p H}=\boldsymbol{p} \boldsymbol{K}_{a}$!!!					

3) $\mathbf{1 9 . 0} \mathbf{~ m L ~ N a O H}$ added (Before the E-point): $0.500 \mathrm{M} \mathrm{HCOOH} \quad 0.500 \mathrm{M} \mathrm{NaOH}^{\rightarrow} 0.500 \mathrm{M} \mathrm{OH}^{-}$ $\mathbf{H C O O H} \rightarrow 20.0 \mathrm{~mL} \times 0.500 \mathrm{mmol} / \mathrm{mL}=\mathbf{1 0 . 0} \mathbf{~ m m o l}$ $\mathbf{O H}^{-} \rightarrow 19.0 \mathrm{~mL} \times 0.500 \mathrm{mmol} / \mathrm{mL}=\mathbf{9 . 5 0} \mathbf{~ m m o l}$

		$\mathrm{HCOOH}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HCOO}^{-}$			
$\mathbf{~}$	\boldsymbol{s}	$\mathbf{1 0 . 0}$	$\mathbf{9 . 5 0}$	-	$\mathbf{0 . 0 0}$
\mathbf{S}	\boldsymbol{r}	$\mathbf{- 9 . 5 0}$	$-\mathbf{9 . 5 0}$	-	$+\mathbf{9 . 5 0}$
	\boldsymbol{f}	$\mathbf{0 . 5 0}$	$\mathbf{0 . 0 0}$	-	$\mathbf{9 . 5 0}$

\rightarrow The system is a buffer $\left(\mathrm{HCOOH} \rightarrow \boldsymbol{a}, \mathrm{HCOO}^{-} \rightarrow \boldsymbol{b}\right)$ $\boldsymbol{p} \boldsymbol{H}=\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a}}+\log \left(\boldsymbol{n}_{b} / \boldsymbol{n}_{a}\right)=-\log \left(1.8 \times 10^{-4}\right)+\log (9.50 / 0.50)$ $\Rightarrow \boldsymbol{p} \boldsymbol{H}=3.74+1.28=\mathbf{5 . 0 2}$

$\mathrm{HCOO}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{OH}^{-}+\mathrm{HCOOH}$			$K_{b}=\frac{\left[\mathrm{OH}^{-}\right][\mathrm{HCOOH}]}{\left[\mathrm{HCOO}^{-}\right]}$	
i 0.250	0	0		
c-x	+x	+ x	x^{2}	
e 0.250-x	x	x	$\frac{0.250-x}{} \sim \frac{x^{2}}{0.250}$	
$\begin{aligned} & \boldsymbol{K}_{b}\left(\mathrm{HCOO}^{-}\right)=\boldsymbol{K}_{w} / \boldsymbol{K}_{a}(\mathrm{HCOOH})=1.0 \times 10^{-14} / 1.8 \times 10^{-4} \\ & \boldsymbol{K}_{b}\left(\mathrm{HCOO}^{-}\right)=5.6 \times 10^{-11} \end{aligned}$				
$\begin{aligned} & \boldsymbol{x}=\left(K_{b} \times 0.250\right)^{1 / 2}=\left(5.6 \times 10^{-11} \times 0.250\right)^{1 / 2}=3.7 \times 10^{-6}=\left[\mathrm{OH}^{-}\right] \\ & {\left[\text {Check assumption: }\left(3.7 \times 10^{-6} / 0.250\right) \times 100=0.0015 \%<5 \%\right]} \end{aligned}$				
$\Rightarrow \boldsymbol{p O H}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(3.7 \times 10^{-6}\right)=5.43$				
$\Rightarrow \boldsymbol{p H}=14.00-\boldsymbol{p O H}=14.00-5.43=8.57$				
\Rightarrow At the E-point $\rightarrow \boldsymbol{p H}>7$ (basic solution!!!)				

4) $\mathbf{2 0 . 0} \mathbf{~ m L ~ N a O H ~ a d d e d ~ (E - p o i n t) : ~}$ $0.500 \mathrm{M} \mathrm{HCOOH} \quad 0.500 \mathrm{M} \mathrm{NaOH} \rightarrow 0.500 \mathrm{M} \mathrm{OH}^{-}$
$\mathbf{H C O O H} \rightarrow 20.0 \mathrm{~mL} \times 0.500 \mathrm{mmol} / \mathrm{mL}=\mathbf{1 0 . 0} \mathbf{~ m m o l}$
$\mathbf{O H}^{-} \rightarrow 20.0 \mathrm{~mL} \times 0.500 \mathrm{mmol} / \mathrm{mL}=\mathbf{1 0 . 0} \mathbf{~ m m o l}$

	$\mathrm{HCOOH}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HCOO}^{-}$				
	\boldsymbol{s}	$\mathbf{1 0 . 0}$	$\mathbf{1 0 . 0}$	-	$\mathbf{0 . 0 0}$
\mathbf{j}	\boldsymbol{r}	$-\mathbf{1 0 . 0}$	$-\mathbf{1 0 . 0}$	-	$+\mathbf{1 0 . 0}$
	\boldsymbol{f}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 0}$	-	$\mathbf{1 0 . 0}$

\rightarrow A solution of the weak base HCOO^{-}
$V_{\text {tot }}=20.0+20.0=40.0 \mathrm{~mL}$
$10.0 \mathrm{mmol} / 40.0 \mathrm{~mL}=\mathbf{0 . 2 5 0} \mathbf{~ M ~ H C O O}^{-}$

5) $\mathbf{2 1 . 0} \mathbf{~ m L ~ N a O H ~ a d d e d ~ (A f t e r ~ t h e ~ E - p o i n t) : ~}$					
00					
$\mathbf{H C O O H} \rightarrow 20.0 \mathrm{~mL} \times 0.500 \mathrm{mmol} / \mathrm{mL}=\mathbf{1 0 . 0} \mathbf{~ m m o l}$ $\mathbf{O H}^{-} \rightarrow 21.0 \mathrm{~mL} \times 0.500 \mathrm{mmol} / \mathrm{mL}=\mathbf{1 0 . 5} \mathbf{~ m m o l}$					
?		$\mathrm{HCOOH}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HCOO}^{-}$			
		10.0	10.5		0.00
		-10.0	-10.0		+10.0
	f	00	0.50		10.0
\rightarrow A solution of the excess strong base $\left(\mathrm{OH}^{-}\right)$and the weak base $\left(\mathrm{HCOO}^{-}\right) \rightarrow$ the weak base is neglected $V_{\text {tot }}=20.0+21.0=41.0 \mathrm{~mL}$ $0.50 \mathrm{mmol} / 41.0 \mathrm{~mL}=\mathbf{0 . 0 1 2} \mathbf{~ M ~ O H}^{-}$ $\boldsymbol{p} \boldsymbol{O H}=-\log (0.012)=\mathbf{1 . 9 1} \Rightarrow \boldsymbol{p} \boldsymbol{H}=14.00-1.91=\mathbf{1 2 . 0 9}$					

Weak base-Strong Acid Titration Curves

$>$ The strong acid is completely converted to $\mathrm{H}_{3} \mathrm{O}^{+}$in water solution
\Rightarrow The net ionic equation of the titration is:

$$
\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{B} \rightarrow \mathrm{HB}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

\Rightarrow At the \mathbf{E}-point, $\boldsymbol{p H}<\mathbf{7 . 0 0}$ (acidic) due to the presence of $\mathbf{H B}^{+}$which is a weak acid
Regions of the titration curve:

1. Initial point \rightarrow solution of the weak base B
2. Before the E-point \rightarrow buffer solution of the weak base, B , and its conjugate acid, HB^{+}(buffer region)
3. At the E-point \rightarrow solution of the weak acid $\mathbf{H B}^{+}$
4. After the E-point \rightarrow excess of $\mathrm{H}_{3} \mathbf{O}^{+}$from acid

Dependence of the Titration Curve on the Strength of the Acid or Base

- Weaker acids and bases have shorter vertical $\boldsymbol{p H}$ ranges at the E-point (more difficult to detect)

A titration curve for the titration of a weak base with a strong acid looks like a mirror image of that for the titration of a weak acid with a strong base

- Characteristics of \mathbf{t}-curves involving weak acids/bases
- Slow $\boldsymbol{p} \boldsymbol{H}$ changes before and after the \mathbf{E}-point and a sharp $\boldsymbol{p} \boldsymbol{H}$ change at the E-point
- At the E-point
- $\boldsymbol{p H} \boldsymbol{H} 7.00$ for titration of weak acids
$\cdot p \boldsymbol{H}<7.00$ for titration of weak bases
- Half-way to the E-point, $\boldsymbol{p} \boldsymbol{H}$ equals $\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a}}$ of the weak acid (or the conjugate acid of the weak base)
- The vertical region of the \mathbf{t}-curve is shorter than the vertical region for strong acid-strong base titrations
- A careful selection of the indicator is necessary

Titration Curves for Polyprotic Acids

$>$ The loss of each proton results in a separate \mathbf{E} point and a separate buffer region
\rightarrow For a diprotic acid, $\mathrm{H}_{2} \mathrm{~A}$, titrated with a strong base there are two E-points and two buffer regions $>$ The net ionic equations of the titration are:

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{~A}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HA}^{-} & \left(1^{\text {st }} \text { E-point }\right) \\
\mathrm{HA}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{A}^{2-} & \left(2^{\text {nd }} \text { E-point }\right)
\end{array}
$$

Example: Titration of $\mathrm{H}_{2} \mathrm{SO}_{3}$ (a diprotic acid with $\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a} 1}=1.85$ and $\boldsymbol{p} \boldsymbol{K}_{\boldsymbol{a} \boldsymbol{2}}=7.19$) with NaOH

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HSO}_{3}^{-} & \left(1^{\text {st }} \text { E-point }\right) \\
\mathrm{HSO}_{3}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{3}^{2-} & \left(2^{\text {nd }} \text { E-point }\right)
\end{array}
$$

19.3 Equilibria of Slightly Soluble Ionic Compounds

- Slightly soluble ionic solids reach equilibrium with their saturated solutions at very low concentrations of the dissolved solute
- The dissolved portion of the ionic solid is assumed to be completely dissociated to ions (not always the case)

The Solubility-Product Constant ($K_{s p}$)

$>$ For an ionic solid, $\mathrm{M}_{p} \mathrm{~A}_{q}$, in equilibrium with its saturated solution, the equilibrium constant of the dissolution process is called solubility-product

$$
\begin{gathered}
\mathrm{M}_{p} \mathrm{~A}_{q}(\mathrm{~s}) \leftrightarrow p \mathrm{M}^{m+}+q \mathrm{~A}^{n-} \\
\boldsymbol{K}_{s p}=\left[\mathbf{M}^{\boldsymbol{m +}}\right]^{p}\left[\mathbf{A}^{n-}\right]^{q}
\end{gathered}
$$

Example: Write the solubility-product expression for $\mathrm{Al}(\mathrm{OH})_{3}$.
\rightarrow The subscripts in the formula become powers in the solubility-product expression

$$
\Rightarrow \quad \boldsymbol{K}_{s p}=\left[\mathrm{Al}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}
$$

Sulfides are slightly different since S^{2-} acts as a strong base in water and converts entirely to OH^{-}

Example: $\mathrm{Ag}_{2} \mathrm{~S}$

$$
\begin{aligned}
& \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s}) \leftrightarrow 2 \mathrm{Ag}^{+}+\mathrm{S}^{2-} \\
& \mathrm{S}^{2-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HS}^{-}+\mathrm{OH}^{-} \\
\rightarrow & \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow 2 \mathrm{Ag}^{+}+\mathrm{H} \\
\Rightarrow & \quad K_{s p}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{HS}^{-}\right]\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

Example: The solubility of $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$ is $0.022 \mathrm{~g} / \mathrm{L}$ at $25^{\circ} \mathrm{C}$. Calculate $\boldsymbol{K}_{\text {sp }}$ of $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$.
\rightarrow Convert the solubility to molar solubility, s
$s=0.022 \frac{\mathrm{~g} \mathrm{~Pb}\left(\mathrm{IO}_{3}\right)_{2}}{\mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{IO}_{3}\right)_{2}}{557 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{IO}_{3}\right)_{2}}=3.9 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~L}}$
\rightarrow Express $\boldsymbol{K}_{\mathrm{sp}}$ through the molar solubility, \boldsymbol{s}

$$
\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}(\mathrm{~s}) \leftrightarrow \mathrm{Pb}^{2+}+2 \mathrm{IO}_{3}^{-}
$$

$1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{IO}_{3}\right)_{2} \rightarrow 1 \mathrm{~mol} \mathrm{~Pb}^{2+}$
$1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{IO}_{3}\right)_{2} \rightarrow 2 \mathrm{~mol} \mathrm{IO}_{3}^{-}$
$\Rightarrow\left[\mathrm{Pb}^{2+}\right]=\boldsymbol{s} \quad$ and $\quad\left[\mathrm{IO}_{3}^{-}\right]=2 \boldsymbol{s}$
$\Rightarrow \boldsymbol{K}_{\text {sp }}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{IO}_{3}^{-}\right]^{2}=\boldsymbol{s}(2 \boldsymbol{s})^{2}=4 \boldsymbol{s}^{3}$
$\Rightarrow \boldsymbol{K}_{\text {sp }}=4 \times\left(3.9 \times 10^{-5}\right)^{3}=2.5 \times \mathbf{1 0}^{-13}$
$>\boldsymbol{K}_{s p}$ can be used as a guide in comparing molar solubilities of different ionic compounds (works only if the compounds have the same number of ions in the formula)

$$
\uparrow \boldsymbol{K}_{s p} \Leftrightarrow \uparrow s
$$

Table 19.3 Relationship Between $K_{\text {sp }}$ and Solubility at $25^{\circ} \mathrm{C}$

No. of lons	Formula	Cation:Anion	$\boldsymbol{K}_{\text {sp }}$	Solubility (\mathbf{M})
2	MgCO_{3}	$1: 1$	3.5×10^{-8}	1.9×10^{-4}
2	PbSO_{4}	$1: 1$	1.6×10^{-8}	1.3×10^{-4}
2	BaCrO_{4}	$1: 1$	2.1×10^{-10}	1.4×10^{-5}
3				
3	$\mathrm{Ca}(\mathrm{OH})_{2}$	$1: 2$	6.5×10^{-6}	1.2×10^{-2}
3	BaF_{2}	$1: 2$	1.5×10^{-6}	7.2×10^{-3}
3	CaF_{2}	$1: 2$	3.2×10^{-11}	2.0×10^{-4}
	$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$	$2: 1$	2.6×10^{-12}	8.7×10^{-5}

- $\boldsymbol{K}_{s p}$ is a measure of the extent to which the solubility equilibrium proceeds to the right $\uparrow \boldsymbol{K}_{s p} \Leftrightarrow \uparrow$ Solubility
$-\boldsymbol{K}_{s p}$ depends on temperature

Calculations Involving $\boldsymbol{K}_{s p}$

- Molar solubility (s) - the molarity of the saturated solution (mol/L)
- The solubility is often expressed in g / L or grams $/ 100 \mathrm{~mL}$ of solution \rightarrow can be easily converted to $\mathrm{mol} / \mathrm{L}$
- $\boldsymbol{K}_{s p}$ can be experimentally determined by measuring the molar solubility, \boldsymbol{s}
$-\boldsymbol{s}$ can be calculated if $\boldsymbol{K}_{s p}$ is known

Example: The $\boldsymbol{K}_{\text {sp }}$ of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ is 1.4×10^{-5} at $24^{\circ} \mathrm{C}$. Calculate the molar solubility of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$.
\rightarrow Express $\boldsymbol{K}_{s p}$ through the molar solubility, \boldsymbol{s}

$$
\mathbf{A g}_{2} \mathbf{S O}_{4}(\mathbf{s}) \leftrightarrow \mathbf{2 A g}^{+}+\mathbf{S O}_{4}{ }^{\mathbf{2 -}}
$$

$\Rightarrow\left[\mathrm{Ag}^{+}\right]=2 \boldsymbol{s} \quad$ and $\quad\left[\mathrm{SO}_{4}{ }^{2-}\right]=\boldsymbol{s}$
$\Rightarrow \boldsymbol{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{SO}_{4}{ }^{2-}\right]=(2 \boldsymbol{s})^{2} \boldsymbol{s}=4 \boldsymbol{s}^{3}$
$\Rightarrow \boldsymbol{s}^{3}=\boldsymbol{K}_{\text {sp }} / 4 \quad \Rightarrow \quad \boldsymbol{s}=\left(\boldsymbol{K}_{\text {sp }} / 4\right)^{1 / 3}$
$\Rightarrow \boldsymbol{s}=\left(1.4 \times 10^{-5} / 4\right)^{1 / 3}=\mathbf{1 . 5} \times \mathbf{1 0}^{-2} \mathbf{M}$
Note: The problem can be solved using an ice table:
$\Rightarrow \boldsymbol{K}_{s p}=(2 \boldsymbol{s})^{2} \boldsymbol{s}=4 \boldsymbol{s}^{3}$

	$\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s}) \leftrightarrow$		
\boldsymbol{i}	excess	$\mathrm{Ag}^{+}+\mathrm{SO}_{4}{ }^{2-}$	
\boldsymbol{c}	$-s$	0	0
e	excess	$+2 s$	$+s$

The Common Ion Effect

For a slightly soluble ionic solid, MA
$\mathrm{MA}(\mathrm{s}) \leftrightarrow \mathrm{M}^{n+}+\mathrm{A}^{n-} \quad \boldsymbol{K}_{\text {sp }}=\left[\mathrm{M}^{n+}\right]\left[\mathrm{A}^{n-}\right]$

- If M^{n+} is added by means of the soluble salt (MB), the equilibrium shifts to the left toward formation of more MA(s)
- MA and MB have a common ion (M^{n+})
- Similarly, if A^{n-} is added to the solution, the equilibrium also shifts to the left toward formation of more MA(s)
\Rightarrow The molar solubility decreases in the presence of common ions

Example: At a given temperature, $\boldsymbol{K}_{s p}$ of AgBr is 7.7×10^{-13}. Estimate the solubility of AgBr in:
a) Pure $\mathrm{H}_{2} \mathrm{O}$
b) $0.10 \mathrm{M} \mathrm{CaBr}_{2}$ solution

a) In pure $\mathrm{H}_{2} \mathrm{O}$

\rightarrow Express $\boldsymbol{K}_{s p}$ through the molar solubility, \boldsymbol{s}

	$\mathrm{AgBr}(\mathrm{s}) \leftrightarrow \mathrm{Ag}^{+}+\mathrm{Br}^{-}$		
\boldsymbol{i}	excess	0	0
c	-S	+s	$+s$
e	excess	S	S

$\Rightarrow\left[\mathrm{Ag}^{+}\right]=\boldsymbol{s} \quad$ and $\quad\left[\mathrm{Br}^{-}\right]=\boldsymbol{s}$
$\Rightarrow \boldsymbol{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}^{-}\right]=\boldsymbol{s}^{2}$
$\Rightarrow \boldsymbol{s}=\left(\boldsymbol{K}_{\text {sp }}\right)^{1 / 2}=\left(7.7 \times 10^{-13}\right)^{1 / 2}=\mathbf{8 . 8} \times 1 \mathbf{1 0}^{-7} \mathbf{M}$

The Effect of $\boldsymbol{p H}$ on Solubility

$>$ The solubility of some ionic solids in water is greatly affected by the $\boldsymbol{p H}$

- Metal hydroxides $\left(\mathrm{Fe}(\mathrm{OH})_{3}, \mathrm{Mg}(\mathrm{OH})_{2}, \ldots\right)$ - the anion $\left(\mathrm{OH}^{-}\right)$reacts with added $\mathrm{H}_{3} \mathrm{O}^{+}$
\Rightarrow The solubility can be improved by adding acids
Example: $\mathrm{Mg}(\mathrm{OH})_{2}$
$\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \leftrightarrow \mathrm{Mg}^{2+}+2 \mathrm{OH}^{-}$
\rightarrow If acid $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$is added:
$\rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$consumes $\mathrm{OH}^{-}\left(\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}\right)$
\rightarrow The equilibrium shifts to the right and the solubility increases

b) In $0.10 \mathrm{M} \mathrm{CaBr}_{2}$ solution

$0.10 \mathrm{M} \mathrm{CaBr}_{2} \rightarrow 0.20 \mathrm{M} \mathrm{Br}^{-}$(Br^{-}is the common ion)
\rightarrow Express $\boldsymbol{K}_{s p}$ through the molar solubility, \boldsymbol{s}

	$\mathrm{AgBr}(\mathrm{s}) \leftrightarrow \mathrm{Ag}^{+}+\mathrm{Br}^{-}$			
\boldsymbol{i}	excess	$\mathbf{0}$	$\mathbf{0 . 2 0}$	
\boldsymbol{c}	$-s$	$+s$	$+\boldsymbol{s}$	
\boldsymbol{e}	excess	\boldsymbol{s}	$\mathbf{0 . 2 0}+\boldsymbol{s}$	

$\Rightarrow \boldsymbol{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}^{-}\right]=\boldsymbol{s}(0.20+\boldsymbol{s})$
\rightarrow Assume $\boldsymbol{s} \ll 0.20 \Rightarrow \boldsymbol{K}_{s p}=\boldsymbol{s}(0.20)$
$\Rightarrow \boldsymbol{s}=\boldsymbol{K}_{\text {sp }} / 0.20=7.7 \times 10^{-13} / 0.20=\mathbf{3 . 8} \times \mathbf{1 0}^{-12} \mathbf{M}$
\rightarrow Check assumption \rightarrow OK
\Rightarrow The solubility is much lower in $0.1 \mathrm{M} \mathrm{CaBr}_{2}$

- Salts of weak acids $\left(\mathrm{CaCO}_{3}, \mathrm{BaSO}_{3}, \mathrm{PbF}_{2}, \mathrm{ZnS}\right.$, ...) - the anion of the salt is a weak base which reacts with added $\mathrm{H}_{3} \mathrm{O}^{+}$
\Rightarrow The solubility can be improved by adding acids
Example: BaSO_{3} (a salt of $\mathrm{H}_{2} \mathrm{SO}_{3}$)
$\mathrm{BaSO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{Ba}^{2+}+\mathrm{SO}_{3}^{2-}$
\rightarrow If acid $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$is added:
$\mathrm{SO}_{3}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{HSO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$consumes $\mathrm{SO}_{3}{ }^{2-}$
\rightarrow The equilibrium shifts to the right and the solubility increases
Example: $\mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{Ca}^{2+}+\mathrm{CO}_{3}{ }^{2-}$
$\mathrm{CO}_{3}{ }^{2-}+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Predicting Precipitation $-Q_{s p}$ versus $K_{s p}$
The reaction quotient of the dissolution process $\left(\boldsymbol{Q}_{s p}\right)$ is defined in the same way as $\boldsymbol{K}_{s p}$ and at equilibrium $\boldsymbol{Q}_{s p}=\boldsymbol{K}_{s p}$
To predict precipitation, compare $\boldsymbol{Q}_{s p}$ to $\boldsymbol{K}_{s p}$ \rightarrow If $\boldsymbol{Q}_{s p}>\boldsymbol{K}_{s p}$, precipitation occurs
\rightarrow If $\boldsymbol{Q}_{s p}<\boldsymbol{K}_{s p}$, dissolution occurs (no precipitation)
\rightarrow If $\boldsymbol{Q}_{s p}=\boldsymbol{K}_{s p}$, no change occurs
Example: Does a precipitate form after mixing of $200 \mathrm{~mL} 1.0 \times 10^{-4} \mathrm{M} \mathrm{AgNO}_{3}$ with 900 . mL $1.0 \times 10^{-6} \mathrm{KCl}$?
($\boldsymbol{K}_{\text {sp }}=1.8 \times 10^{-10}$ for AgCl$)$


```
\(\rightarrow\) Calculate \(\boldsymbol{Q}_{s p}\) :
    \(\boldsymbol{Q}_{s p}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=\left(1.8 \times 10^{-5}\right) \times\left(8.2 \times 10^{-7}\right)\)
    \(\boldsymbol{Q}_{s p}=1.5 \times 10^{-11}\)
    \(\boldsymbol{K}_{\text {sp }}=1.8 \times 10^{-10}\)
    \(\Rightarrow \boldsymbol{Q}_{\text {sp }}<\boldsymbol{K}_{\text {sp }}\)
    \(\Rightarrow\) No precipitation occurs
```

$>$ In reality, the metal cation, \mathbf{M}^{n+}, is hydrated by several water molecules and the ligand, \mathbf{L}, gradually replaces them one at a time in stepwise manner

19.4 Equilibria Involving Complex Ions

- Complex ions - consist of a metal cation surrounded by anions or neutral molecules called ligands
- Complex ions are Lewis acid-base complexes (adducts)
- The metal cation is a Lewis acid
- The ligands are Lewis bases

Formation of Complex Ions

$>$ For a metal cation, $\mathbf{M}^{\boldsymbol{n}}$, and a neutral ligand, \mathbf{L}, the complex formation is given by the equilibrium:

$$
\mathrm{M}^{n+}+m \mathrm{~L} \leftrightarrow \mathrm{M}(\mathrm{~L})_{m}{ }^{\mathrm{n}+}
$$

$$
\boldsymbol{K}_{f}=\frac{\left[\mathbf{M}(\mathbf{L})_{m}^{n+}\right]}{\left[\mathbf{M}^{n+}\right][\mathbf{L}]^{m}}
$$

$K_{f} \rightarrow$ formation constant of the complex

- Complexes between good Lewis acids (such as highly charged and transition metal cations) and good Lewis bases (such as $\mathrm{NH}_{3}, \mathrm{CN}^{-}, \mathrm{OH}^{-}, \ldots$) are extremely stable
- Their \boldsymbol{K}_{f} values are very large ($>10^{5}$)
\Rightarrow If enough ligand is present in the solution, almost the entire amount of the cation is converted to the complex $\rightarrow \boldsymbol{C}_{\boldsymbol{M}} \approx\left[\mathrm{M}(\mathrm{L})_{m}{ }^{n+}\right]$
Example: What is the concentration of Fe^{3+} after mixing of $\mathbf{2 5} \mathbf{m L} \mathbf{0 . 0 2 0} \mathbf{M ~ F e}\left(\mathrm{NO}_{3}\right)_{3}$ solution with $\mathbf{2 5} \mathbf{~ m L ~ 1 . 0 ~ M ~ K C N ~ s o l u t i o n ? ~}\left(K_{f}=\mathbf{4 . 0 \times 1 0} \mathbf{0}^{\mathbf{4 3}}\right.$ for the complex $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$)
$\rightarrow 0.020 \mathrm{M} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow 0.020 \mathrm{M} \mathrm{Fe}^{3+}$
$\rightarrow 1.0 \mathrm{M} \mathrm{KCN} \rightarrow 1.0 \mathrm{M} \mathrm{CN}^{-}$
\rightarrow After mixing, the total volume is $25+25=50 \mathrm{~mL}$
$\Rightarrow \boldsymbol{C}_{\boldsymbol{F e}}=(0.020 \mathrm{M} \times 25 \mathrm{~mL} / 50 \mathrm{~mL})=0.010 \mathrm{M}$
$\Rightarrow \boldsymbol{C}_{C N}=(1.0 \mathrm{M} \times 25 \mathrm{~mL} / 50 \mathrm{~mL})=0.50 \mathrm{M}$

	$\mathrm{Fe}^{3+}+6 \mathrm{CN}^{-} \leftrightarrow \mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$			$K_{f}=\frac{\left[\mathrm{Fe}(\mathrm{CN})_{6}^{3-}\right]}{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{CN}^{-}\right]^{6}}$
i	0.010	0.50	0	
c	$-x$	-6x	+ x	0.010
e	0.010-x	0.50-6x	x	$K_{f}=\frac{0.010}{y(0.44)}{ }^{6}$
e,	y	0.44	0.010	

$\rightarrow \boldsymbol{K}_{f}$ is very large so almost the entire amount of
Fe^{3+} is converted to the complex
$\Rightarrow x \approx C_{F e} \quad \Rightarrow \quad x \approx 0.010$
$\Rightarrow(0.50-6 x) \approx(0.50-6 \times 0.010)=\mathbf{0 . 4 4}$
\rightarrow Define a new variable, $\boldsymbol{y}=0.010-\boldsymbol{x}=\left[\mathrm{Fe}^{3+}\right]$

$$
\begin{aligned}
& K_{f}=\frac{0.010}{y(0.44)^{6}} \Rightarrow y=\frac{0.010}{K_{f}(0.44)^{6}} \\
& y=\frac{0.010}{4.0 \times 10^{43}(0.44)^{6}}=3.4 \times 10^{-44} \mathrm{M}=\left[\mathrm{Fe}^{3+}\right]
\end{aligned}
$$

Complex Ions and Solubility of Precipitates
$>$ The solubility of some ionic solids in water can be improved by the addition of an appropriate ligand (such as $\mathrm{NH}_{3}, \mathrm{CN}^{-}, \ldots$)

- The ligand (L) forms a complex with the cation of the slightly soluble salt and the solubility equilibrium shifts toward further dissolution
$\mathrm{MA}(\mathrm{s}) \leftrightarrow \mathrm{M}^{n+}+\mathrm{A}^{n-} \quad \mathrm{M}^{n+}+m \mathrm{~L} \leftrightarrow \mathrm{M}(\mathrm{L})_{m}{ }^{\mathrm{n}+}$

Example: The solubility of AgCl can be improved by addition of ammonia, NH_{3}. $\begin{array}{ll}\mathrm{AgCl}(\mathrm{s}) \leftrightarrow \mathrm{Ag}^{+}+\mathrm{Cl}^{-} & \boldsymbol{K}_{\text {sp }}=1.8 \times 10^{-10} \\ \mathrm{Ag}^{+}+2 \mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+} & \boldsymbol{K}_{\boldsymbol{f}}=1.7 \times 10^{7}\end{array}$
$\oplus \rightarrow \mathrm{AgCl}(\mathrm{s})+2 \mathrm{NH}_{3}(\mathrm{aq}) \leftrightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}+\mathrm{Cl}^{-}$
$\rightarrow \boldsymbol{K}=\boldsymbol{K}_{s p} \times \boldsymbol{K}_{\boldsymbol{f}}=1.8 \times 10^{-10} \times 1.7 \times 10^{7}=\mathbf{3 . 1} \times \mathbf{1 0}^{-3}$
\rightarrow The overall equilibrium constant, \boldsymbol{K}, is much larger than $\boldsymbol{K}_{s p}$
\Rightarrow The addition of NH_{3} shifts the equilibrium to the right and the solubility increases
Example: Calculate the molar solubility of AgCl in $\mathbf{0 . 1 0} \mathbf{M ~ N H}_{3}$ solution.

Note: The solubility of AgCl in $0.10 \mathrm{M} \mathrm{NH}_{3}$ is higher than that in pure water which is:
$\boldsymbol{s}=\left(\boldsymbol{K}_{\text {sp }}\right)^{1 / 2}=\left(1.8 \times 10^{-10}\right)^{1 / 2}=\mathbf{1 . 3} \times \mathbf{1 0}^{-5} \mathbf{M}$

The solubility of amphoteric hydroxides can be explained as a complex formation process Example: $\mathrm{Al}(\mathrm{OH})_{3}$
\rightarrow In acidic solution OH^{-}ions are scarce so Al^{3+} is completely hydrated as $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$
\rightarrow As the solution becomes less acidic and more basic, the OH^{-}ions gradually accept H^{+}from the hydrating water molecules
$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+\mathrm{OH}^{-} \leftrightarrow \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}+\mathrm{OH}^{-} \leftrightarrow \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}{ }^{+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}^{+}+\mathrm{OH}^{-} \leftrightarrow \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

19.5 Applications of Ionic Equilibria Selective Precipitation

$>$ Mixtures of cations can be separated by selective precipitation with an anion if the solubilities of the precipitates are significantly different
$>$ The concentration of the anion is selected in a way so that $\boldsymbol{Q}_{s p}$ is above $\boldsymbol{K}_{s p}$ for the less soluble ion and just below $\boldsymbol{K}_{\text {sp }}$ for the more soluble ion
Example: What is the maximum concentration of Cl^{-}that would precipitate only one of the ions in a solution that is $\mathbf{0 . 0 0 1 0} \mathrm{M}$ in Ag^{+}and $\mathbf{0 . 0 2 0} \mathrm{M}$ in $\mathrm{Pb}^{2+} ? \boldsymbol{K}_{\text {sp }}(\mathrm{AgCl})=1.8 \times 10^{-10} ; \boldsymbol{K}_{\text {sp }}\left(\mathrm{PbCl}_{2}\right)=1.7 \times 10^{-5}$
$\mathrm{AgCl}(\mathrm{s}) \rightarrow \mathrm{Ag}^{+}+\mathrm{Cl}^{-} \quad \boldsymbol{K}_{s p}=\left[\mathrm{Ag}^{+}\right][\mathrm{Cl}]$
$\mathrm{PbCl}_{2}(\mathrm{~s}) \rightarrow \mathrm{Pb}^{2+}+2 \mathrm{Cl}^{-} \quad \boldsymbol{K}_{\text {sp }}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}$
\rightarrow Calculate the concentrations of Cl^{-}at which precipitation of each ion begins:
$\left[\mathrm{Cl}^{-}\right]=\frac{K_{s p}}{\left[\mathrm{Ag}^{+}\right]}=\frac{\mathbf{1 . 8} \times 10^{-10}}{0.0010}=1.8 \times 10^{-7} \mathrm{M}$
$\left[\mathrm{Cl}^{-}\right]=\sqrt{\frac{K_{s p}}{\left[\mathrm{~Pb}^{2+}\right]}}=\sqrt{\frac{1.7 \times 10^{-5}}{\mathbf{0 . 0 2 0}}}=\mathbf{2 . 9 \times 1 0 ^ { - 2 } \mathrm { M } .}$
$\rightarrow \mathrm{AgCl}$ will precipitate first at $\left[\mathrm{Cl}^{-}\right]>1.8 \times 10^{-7} \mathrm{M}$ \rightarrow If $\left[\mathrm{Cl}^{-}\right]<2.9 \times 10^{-2} \mathrm{M}, \mathrm{PbCl}_{2}$ will not precipitate \Rightarrow The maximum [Cl^{-}] is just below $2.9 \times \mathbf{1 0}^{-\mathbf{2}} \mathbf{M}$
Note: The concentration of unprecipitated Ag^{+}is:
$\left[\mathrm{Ag}^{+}\right]=\boldsymbol{K}_{s p} /\left[\mathrm{Cl}^{-}\right]=1.8 \times 10^{-10} / 2.9 \times 10^{-2}=6.2 \times 10^{-9} \mathrm{M}$

