Ionic Equilibria in Aqueous Systems

19.1 Acid-Base Buffers

- Resist changes in **pH** upon addition of acids (H⁺) or bases (OH-)

The Buffer Action

- Buffer solutions consist of to components
 - Acid component reacts with added bases (OH-)
 - Base component reacts with added acids (H⁺)
 - The two components must be a **conjugate acid**base pair
 - The two components must be present in **high** concentrations

➤ Weak acid buffer – a solution of the weak acid, HA, and its conjugate base, A⁻ (HF/F⁻, ...)

$$ightharpoonup Add H_3O^+$$
 (acid) $ightharpoonup (A^- consumes the added H_3O^+)
 $H_3O^+ + A^-
ightharpoonup H_2O + HA$$

$$ightharpoonup$$
 Add OH⁻ (base) $ightharpoonup$ (HA consumes the added OH⁻)
OH⁻ + HA $ightharpoonup$ H₂O + A⁻

- ➤ Weak base buffer a solution of the weak base, B, and its conjugate acid, HB⁺ (NH₄⁺/NH₃, ...)
 - $ightharpoonup Add H_3O^+ (acid) \rightarrow (B consumes the added H_3O^+)$ $H_3O^+ + B \rightarrow H_2O + HB^+$
 - $ightharpoonup Add OH^- (base) \rightarrow (HB^+ consumes the added OH^-)$ $OH^- + HB^+ \rightarrow H_2O + B$
- ⇒The addition of H₃O⁺ and OH⁻ changes the relative amounts of the buffer components (HA/A- or HB+/B)

The *pH* of a Buffer

- For a weak acid buffer (HA/A-), A- can be supplied in solution by means of the salt, MA $MA \rightarrow M^+ + A^-$
- HA and A- reach equilibrium

$$HA + H_2O \leftrightarrow H_3O^+ + A^-$$

$$K_a = \frac{[\mathbf{H}_3\mathbf{O}^+][\mathbf{A}^-]}{[\mathbf{H}\mathbf{A}]} \quad \Rightarrow \quad [\mathbf{H}_3\mathbf{O}^+] = K_a \frac{[\mathbf{H}\mathbf{A}]}{[\mathbf{A}^-]}$$

- \Rightarrow The [H₃O⁺] and **pH** depend on the ratio [HA]/[A⁻]
- \rightarrow If [HA] and [A-] are relatively large, adding small amounts of H₃O⁺ or OH⁻ changes the ratio only slightly, so $[H_3O^+] \approx constant$

- Both HA and A react with water
 - 1. $HA + H_2O \leftrightarrow H_2O^+ + A^-$
 - 2. $A^- + H_2O \leftrightarrow OH^- + HA$
- →Both equilibria are shifted to the left, so the amounts of HA and A- produced are often very small compared to the total concentrations, C_{HA} and C_A -
 - \Rightarrow Assume that [HA]₂ and [A⁻]₁ << C_{HA} and C_{A} -

$$[HA] = C_{HA} - [A^{-}]_{1} + [HA]_{2} \approx C_{HA} = C_{a}$$

 $[A^{-}] = C_{A} - [HA]_{2} + [A^{-}]_{1} \approx C_{A} - = C_{b}$

 $\rightarrow C_a$ and C_b – total concentrations of the acid and base components of the buffer

$$[\mathbf{H}_3\mathbf{O}^+] = K_a \frac{[\mathbf{H}\mathbf{A}]}{[\mathbf{A}^-]} \quad \Rightarrow \quad [\mathbf{H}_3\mathbf{O}^+] = K_a \frac{C_a}{C_b}$$

$$\rightarrow$$
 Take a **-log()** of $[H_3O^+] = K_a(C_a/C_b)$

$$-\log[\mathbf{H}_3\mathbf{O}^+] = -\log K_a - \log \frac{C_a}{C_b} = -\log K_a + \log \frac{C_b}{C_a}$$

$$-\log[H_3O^+] = -\log K_a - \log \frac{C_a}{C_b} = -\log K_a + \log \frac{C_b}{C_a}$$

$$\Rightarrow pH = pK_a + \log \frac{C_b}{C_a} \quad \text{Henderson-Hasselbalch}$$
Equation

- \rightarrow The equation is valid only if C_a and C_b are large enough so that the assumptions [HA] $\approx C_a$ and [A⁻]
 - $\approx C_h$ are justified; If not, [HA] and [A-] must be used
 - \rightarrow Works if $C_a > 100 \times K_a$ and $C_b > 100 \times K_b$
- \rightarrow If $C_a = C_b$, $\log(C_a/C_b) = 0$ and $pH = pK_a$
- \Rightarrow If C_a and C_b are comparable, the pH of the buffer is close to the pK_a of the acid component

Example: What is the pH of a buffer that is 0.50**M** in HF and **0.50 M** in KF? ($K_a = 6.8 \times 10^{-4}$ for HF)

1. Use the Hend.-Hass. Eq. (HF – acid; F- – base)

$$C_a = 0.50$$
 $C_b = 0.50$

 $pH = pK_a + \log(0.50/0.50) = pK_a + \log(1) = pK_a + 0$ $pH = pK_a = -\log(6.8 \times 10^{-4}) = \boxed{3.17}$

2. Or use an ice table

[]	$HF + H_2O \leftarrow$	$HF + H_2O \leftrightarrow H_3O^+ + F^-$				
l i	0.50	0	0.50			
c	-x	+x	+x			
e	0.50 - x	x	0.50 + x			

$$K_a = \frac{[\mathbf{H}_3 \mathbf{O}^+][\mathbf{F}^-]}{[\mathbf{H}\mathbf{F}]} =$$

 $K_a = \frac{[H_3O^+][F^-]}{[HF]} = \frac{x(0.50 + x)}{(0.50 - x)} \approx \frac{x(0.50)}{(0.50)}$

$$x = K_a = 6.8 \times 10^{-4} = [H_3O^+] \Rightarrow pH = -\log(6.8 \times 10^{-4}) = 3.17$$

Example: For **1.0** L of the same buffer, calculate the *pH* after the addition of **5.0** mL **2.0** M HCl.

- →HCl is a strong acid and converts to H₃O⁺ which reacts with F⁻ from the buffer
- →Calculate the starting moles of HF and F⁻ in the buffer and the added moles of H₂O⁺ from HCl

$$\begin{array}{ll} HF & \rightarrow 1.0 \ L \times 0.50 \ mol/L = \textbf{0.50 mol} \\ F^{-} & \rightarrow 1.0 \ L \times 0.50 \ mol/L = \textbf{0.50 mol} \\ H_{3}O^{+} & \rightarrow 0.0050 \ L \times 2.0 \ mol/L = \textbf{0.010 mol} \end{array}$$

→Use an "srf" table (starting, reacted, final) to calculate the final moles of HF and F

	[]	$F^- + H_3O^+ \rightarrow H_2O + HF$					
Sa	s	0.50	0.010	_	0.50		
moles	r	-0.010	-0.010	_	+0.010		
<u>u</u>	f	0.49	0.00	_	0.51		

- \rightarrow Use the Hend.-Hass. Eq. (HF acid; F⁻ base)
 - →Since the acid an base components of the buffer are in the same volume, the ratio of the concentrations is the same as the ratio of the moles $\rightarrow C_b/C_a = n_b/n_a$

$$pH = pK_a + \log \frac{n_b}{n_a} = -\log(6.8 \times 10^{-4}) + \log \frac{0.49}{0.51}$$
$$= 3.17 + (-0.02) = 3.15$$

 \Rightarrow The *pH* is reduced by only 0.02 *pH*-units

• The addition of strong acids or bases to unbuffered solutions has a much greater effect on *pH*

Example: Calculate the *pH* after the addition of **5.0 mL 2.0 M** HCl to **1.0 L** of pure water .

- \rightarrow The *pH* of pure water is **7.00**
- →After addition of the strong acid HCl:

$$[H_3O^+] = \frac{0.0050 \text{ L} \times \frac{2.0 \text{ mol}}{1 \text{ L}}}{(1.0 + 0.0050) \text{ L}} = 0.010 \text{ M}$$

$$pH = -\log(0.010) = 2.00$$

⇒ The *pH* is reduced by 5.00 *pH*-units (a much larger change compared to the buffered solution)

Buffer Capacity and Buffer Range

- **Buffer capacity** (*BC*) a measure of the ability of the buffer to resist *pH* changes
 - -BC is higher for more concentrated buffers

$$\uparrow \uparrow C_a$$
 and $C_b \Rightarrow \uparrow \uparrow$ Buffer capacity

- -BC is higher for buffers with similar component concentrations (BC is highest when $C_a = C_b$)
- Buffer range (BR) buffers act most efficiently when C_b/C_a is between **0.1** and **10**

$$pH = pK_a + \log(0.1) = pK_a - 1$$

$$pH = pK_a + \log(10) = pK_a + 1$$

$$\Rightarrow BR = pK_a \pm 1$$

Preparing Buffers

- **Choose the conjugate acid-base pair** (select a pair with an acid component having pK_a close to the desired buffer pH)
- **Calculate the ratio of** C_b/C_a needed to achieve the desired buffer pH (use the Hend.-Hass. Eq.)
- ➤ Determine the buffer concentration and the amounts of the two components to be mixed
- ➤ Mix the components and adjust the pH (final pH may be slightly off and can be adjusted by adding strong acid or base)
- ➤ Buffers can also be prepared by **partial neutralization** of weak acids (or bases) with strong bases (or acids) (Ex: HF + KOH \rightarrow KF + H₂O; If only half of the HF is converted to KF \rightarrow buffer)

Example: How many moles of NH₄Cl must be added to **1.0** L of **0.20** M NH₃ solution to get a buffer with pH = 9.35? ($K_b = 1.8 \times 10^{-5}$ for NH₃)

- \rightarrow Conjugate pair NH_4^+/NH_3
- $\rightarrow K_a = K_w/K_b = 10^{-14}/1.8 \times 10^{-5} = 5.6 \times 10^{-10}$
- $\rightarrow pK_a = -\log(5.6 \times 10^{-10}) = 9.25$
- $\rightarrow n_b = 1.0 \text{ L} \times 0.20 \text{ mol/L} = 0.20 \text{ mol NH}_3 \qquad n_a = ??$

$$pH = pK_a + \log \frac{n_b}{n_a}$$
 \rightarrow 9.35 = 9.25 + $\log \frac{0.20}{n_a}$

- $\rightarrow 0.10 = \log(0.20/n_a) \rightarrow 10^{0.10} = 0.20/n_a$
- $\rightarrow n_a = 0.20/10^{0.10} = 0.16 \text{ mol NH}_4^+ = 0.16 \text{ mol NH}_4\text{Cl}$

19.2 Acid-Base Titration Curves

- **Titration curves** plots of *pH* versus the volume of titrant added during titration
- Equivalence point (E) a point along the course of the titration at which the acid and the base are present in equivalent (stoichiometric) amounts and consume each other completely
 - Typically, the *pH* changes sharply at the E-point and this fact is used in the detection of the E-point
 - The titration is actually stopped at the **end point**
 - Ideally, the end point should be at the equivalence point, but in practice they can differ slightly due to imperfect detection of the E-point

Acid-Base Indicators

- **Indicators** used to estimate the *pH* of solutions and to detect the **E**-point in titrations
 - Weak organic acids with general formula HIn
 - Exhibit different colors at different *pH* values
 - The colors are quite intense so only small amounts are needed for detection
- **Indicator rage** a relatively narrow *pH* range over which the indicator changes color
 - If the **E**-point is within (or close to) the indicator range, the indicator changes color very close to **E**
 - ⇒ The *pH* at the E-point must be known for the proper selection of an indicator

The indicator is a weak B-L acid

$$HIn + H_2O \leftrightarrow H_3O^+ + In^-$$

- The acid form of the indicator, HIn, and its conjugate base, In-, have different colors
- If [HIn]/[In⁻] > 10, the solution has the color of the acid form, HIn
- If [HIn]/[In⁻] < 0.1, the solution has the color of the base form, In⁻
- \Rightarrow The color change is within 0.1 < [HIn]/[In-] < 10

$$K_{In} = \frac{[\mathbf{H}_3\mathbf{O}^+][\mathbf{In}^-]}{[\mathbf{HIn}]} \Rightarrow \frac{[\mathbf{HIn}]}{[\mathbf{In}^-]} = \frac{[\mathbf{H}_3\mathbf{O}^+]}{K_{In}}$$

 \Rightarrow The ratio [HIn]/[In-] depends on [H₃O+]

Strong Acid-Strong Base Titration Curves

- ➤ Strong acids and bases are completely converted to H₃O⁺ and OH⁻ in water solns.
 - ⇒ The net ionic equation of the titration is:

$$H_3O^+ + OH^- \rightarrow 2H_2O$$

- \Rightarrow At the E-point, pH = 7.00 (neutral)
- To calculate the *pH* during the titration:
- 1. Calculate the **mmol of H₃O**⁺ from the acid
- 2. Calculate the **mmol of OH** from the base
- 3. Calculate the **excess mmol of H₃O⁺ or OH**⁻ from the difference between (1) and (2)
- 4. Calculate $[H_3O^+]$ or $[OH^-]$ from the excess and the total volume of the solution $(V_{tot}) \rightarrow$ convert to pH

Example: Calculate the *pH* during the titration of **40.0 mL 0.100 M** HCl with **0.100 M** NaOH after the addition of **25.0 mL** NaOH.

 $0.100 \text{ M HCl} \rightarrow 0.100 \text{ M H}_3\text{O}^+ = 0.100 \text{ mmol/mL}$ $0.100 \text{ M NaOH} \rightarrow 0.100 \text{ M OH}^- = 0.100 \text{ mmol/mL}$

- 1. $H_3O^+ \rightarrow 40.0 \text{ mL} \times 0.100 \text{ mmol/mL} = 4.00 \text{ mmol}$
- 2. **OH**⁻ \rightarrow 25.0 mL \times 0.100 mmol/mL = **2.50 mmol**
- 3. Excess acid = $4.00 2.50 = 1.50 \text{ mmol H}_3\text{O}^+$
- 4. $V_{tot} = 40.0 + 25.0 = 65.0 \text{ mL}$
 - $1.50 \text{ mmol} / 65.0 \text{ mL} = 0.0231 \text{ M H}_3\text{O}^+$

 $pH = -\log(0.0231) = \boxed{1.64}$ (acidic, before E-point)

- A titration curve for the titration of a strong base with a strong acid looks like a mirror image of that for the titration of a strong acid with a strong base
- Characteristics of strong acid-strong base t-curves
 - Slow pH changes before and after the E-point
 - A sharp **pH** change at the E-point (**pH** = 7.00) \rightarrow 1-2 drops cause a **pH** change of 5-6 pH units)
 - The **vertical region** of the **t**-curve is quite long (from $pH\approx4$ to $pH\approx10$)
 - Any indicator having a range within the vertical region of the t-curve can be used (the indicator range does not have to be at 7.00)
- \Rightarrow Phenolphthalein (8.3-10), Methyl red (4.3-6.2), Phenol red (6.8-8.3), ... can all be used

Example: Calculate the **pH** during the titration of 20.0 mL 0.500 M HCl with 0.250 M Ba(OH)₂ after the addition of **21.0 mL** Ba(OH)₂

 $0.500~\textrm{M HCl} \rightarrow 0.500~\textrm{M H}_3\textrm{O}^+$

 $0.250 \text{ M Ba(OH)}_2 \rightarrow 0.500 \text{ M OH}^- !!!$

- 1. $H_3O^+ \rightarrow 20.0 \text{ mL} \times 0.500 \text{ mmol/mL} = 10.0 \text{ mmol}$
- 2. $OH^{-} \rightarrow 21.0 \text{ mL} \times 0.500 \text{ mmol/mL} = 10.5 \text{ mmol}$
- 3. Excess base = 10.5 10.0 = 0.50 mmol OH
- 4. $V_{tot} = 20.0 + 21.0 = 41.0 \text{ mL}$

 $0.50 \text{ mmol} / 41.0 \text{ mL} = 0.012 \text{ M OH}^{-}$

 $pOH = -\log(0.012) = 1.91$

pH = 14.00 - 1.91 = |12.09| (basic, after E-point)

Weak Acid-Strong Base Titration Curves

- The strong base is completely converted to OH- in water solution
 - ⇒ The net ionic equation of the titration is:

$$HA + OH^- \rightarrow H_2O + A^-$$

- \Rightarrow At the E-point, pH > 7.00 (basic) due to the presence of A which is a weak base
- **Regions** of the titration curve:
- 1. Initial point \rightarrow solution of the weak acid HA
- 2. Before the E-point \rightarrow buffer solution of the weak acid, HA, and its conjugate base, A (buffer region)
- 3. At the E-point \rightarrow solution of the weak base A
- 4. After the E-point \rightarrow excess of OH⁻ from base

Example: Calculate the **pH** during the titration of 20.0 mL 0.500 M HCOOH with 0.500 M NaOH after the addition of **0.0**, **10.0**, **19.0**, **20.0** and **21.0** mL NaOH

- 1) 0.0 mL NaOH added (Initial point):
- → A 0.500 M solution of the weak acid HCOOH

	HCOOH + H₂O ←	→ H ₃ O ⁺ -	+ HCOO-	$K_a = \frac{[H_3O^+][HCOO^-]}{[HCOO^-]}$
i	0.500	0	0	[HCOOH]
c	-x	+x	+x	$K_a = \frac{x^2}{0.500 - x} \approx \frac{x^2}{0.500}$
e	0.500 - x	X	X	" 0.500 - x 0.500
x	$=(0.500K_a)^{1/2}=(1.500K_a)^{1/2}$.8×10 ⁻⁴ ×	$(0.500)^{1/2} =$	$= 9.5 \times 10^{-3} = [H_3O^+]$

 $\Rightarrow pH = -\log[H_3O^+] = -\log(9.5 \times 10^{-3}) = 2.02$

2) 10.0 mL NaOH added (Half-way to the E-point): $0.500 \text{ M NaOH} \rightarrow 0.500 \text{ M OH}^{-}$ 0.500 M HCOOH $HCOOH \rightarrow 20.0 \text{ mL} \times 0.500 \text{ mmol/mL} = 10.0 \text{ mmol}$ $OH^- \rightarrow 10.0 \text{ mL} \times 0.500 \text{ mmol/mL} = 5.00 \text{ mmol}$

		НСООН	+ OH	+ H ₂ O +	HCOO-
7	s	10.0	5.00	-	0.00
што	r	-5.00	-5.00	_	+5.00
M	f	5.00	0.00	_	5.00

 \rightarrow The system is a **buffer** (HCOOH $\rightarrow a$, HCOO $\rightarrow b$)

$$pH = pK_a + \log(n_b/n_a) = pK_a + \log(5.00/5.00) = pK_a + 0$$

 $\Rightarrow pH = pK_a = -\log(1.8 \times 10^{-4}) = \boxed{3.74}$

 \Rightarrow Half-way to the E-point $\rightarrow pH = pK_a!!!$

Cont: Titration of 20.0 mL 0.500 M HCOOH with 0.500 M NaOH

3) 19.0 mL NaOH added (Before the E-point):

0.500 M HCOOH 0.500 M NaOH \rightarrow 0.500 M OH

 $HCOOH \rightarrow 20.0 \text{ mL} \times 0.500 \text{ mmol/mL} = 10.0 \text{ mmol}$

 $OH^- \rightarrow 19.0 \text{ mL} \times 0.500 \text{ mmol/mL} = 9.50 \text{ mmol}$

	$HCOOH + OH^- \rightarrow H_2O + HCOO^-$					
16	S	10.0	9.50	_	0.00	
mmo	r	-9.50	-9.50	_	+9.50	
	f	0.50	0.00	-	9.50	

 \rightarrow The system is a **buffer** (HCOOH $\rightarrow a$, HCOO⁻ $\rightarrow b$)

$$pH = pK_a + \log(n_b/n_a) = -\log(1.8 \times 10^{-4}) + \log(9.50/0.50)$$

	$HCOO^- + H_2O \leftarrow$	→ OH- +	НСООН
i	0.250	0	0
c	- <i>x</i>	+x	+x
e	0.250 - x	x	х

$$K_b = \frac{[\text{OH}^-][\text{HCOOH}]}{[\text{HCOO}^-]}$$
$$K_b = \frac{x^2}{2\pi \pi^2} \approx \frac{x^2}{2\pi \pi^2}$$

$$K_b(\text{HCOO}^-) = K_w/K_a(\text{HCOOH}) = 1.0 \times 10^{-14}/1.8 \times 10^{-4}$$

 $K_b(\text{HCOO}^-) = 5.6 \times 10^{-11}$

$$\mathbf{x} = (K_b \times 0.250)^{\frac{1}{2}} = (5.6 \times 10^{-11} \times 0.250)^{\frac{1}{2}} = 3.7 \times 10^{-6} = [\text{OH}^-]$$

[Check assumption: $(3.7 \times 10^{-6}/0.250) \times 100 = 0.0015\% < 5\%$]

$$\Rightarrow$$
 pOH = -log[OH⁻] = -log(3.7×10⁻⁶) = 5.43

$$\Rightarrow pH = 14.00 - pOH = 14.00 - 5.43 = 8.57$$

 \Rightarrow At the E-point $\rightarrow pH > 7$ (basic solution!!!)

4) 20.0 mL NaOH added (E-point):

0.500 M HCOOH $0.500 \text{ M NaOH} \rightarrow 0.500 \text{ M OH}$

 $HCOOH \rightarrow 20.0 \text{ mL} \times 0.500 \text{ mmol/mL} = 10.0 \text{ mmol}$ $OH^- \rightarrow 20.0 \text{ mL} \times 0.500 \text{ mmol/mL} = 10.0 \text{ mmol}$

		НСООН	$\frac{\text{HCOOH} + \text{OH}^{-} \rightarrow \text{H}_2\text{O} + \text{HCOO}^{-}}{\text{HCOO}^{-}}$						
7	s	10.0	10.0	_	0.00				
mmol	r	-10.0	-10.0	_	+10.0				
Z	f	0.00	0.00	_	10.0				

→A solution of the weak base HCOO-

$$V_{tot} = 20.0 + 20.0 = 40.0 \text{ mL}$$

10.0 mmol / 40.0 mL = 0.250 M HCOO

5) 21.0 mL NaOH added (After the E-point):

0.500 M HCOOH 0.500 M NaOH \rightarrow 0.500 M OH-HCOOH \rightarrow 20.0 mL \times 0.500 mmol/mL = **10.0 mmol**

 $OH^- \rightarrow 21.0 \text{ mL} \times 0.500 \text{ mmol/mL} = 10.5 \text{ mmol}$

		НСООН	+ OH	→ H ₂ O +	HCOO-
16	S	10.0	10.5	_	0.00
mmol	r	-10.0	-10.0	_	+10.0
Z	f	0.00	0.50	_	10.0

 \rightarrow A solution of the **excess strong base** (OH⁻) and the weak base (HCOO⁻) \rightarrow the weak base is neglected

$$V_{tot} = 20.0 + 21.0 = 41.0 \text{ mL}$$

 $0.50 \text{ mmol} / 41.0 \text{ mL} = 0.012 \text{ M OH}^{-}$

$$pOH = -\log(0.012) = 1.91 \Rightarrow pH = 14.00 - 1.91 = \boxed{12.09}$$

Weak base-Strong Acid Titration Curves

- ➤ The strong acid is completely converted to H₃O⁺ in water solution
 - \Rightarrow The net ionic equation of the titration is:

$$H_3O^+ + B \rightarrow HB^+ + H_2O$$

- \Rightarrow At the E-point, pH < 7.00 (acidic) due to the presence of HB^+ which is a weak acid
- **Regions** of the titration curve:
- 1. Initial point \rightarrow solution of the weak base B
- 2. Before the E-point → buffer solution of the weak base, B, and its conjugate acid, HB⁺ (buffer region)
- 3. At the E-point \rightarrow solution of the weak acid HB⁺
- 4. After the E-point \rightarrow excess of H_3O^+ from acid

- A titration curve for the titration of a weak base with a strong acid looks like a mirror image of that for the titration of a weak acid with a strong base
- Characteristics of t-curves involving weak acids/bases
 - Slow *pH* changes before and after the E-point and a sharp *pH* change at the E-point
 - At the **E**-point
 - pH > 7.00 for titration of weak acids
 - pH < 7.00 for titration of weak bases
 - Half-way to the E-point, pH equals pK_a of the weak acid (or the conjugate acid of the weak base)
 - The vertical region of the t-curve is shorter than the vertical region for strong acid-strong base titrations
 - A careful selection of the indicator is necessary

Dependence of the Titration Curve on the Strength of the Acid or Base

 Weaker acids and bases have shorter vertical pH ranges at the E-point (more difficult to detect)

Titration Curves for Polyprotic Acids

- ➤ The loss of each proton results in a separate Epoint and a separate buffer region
- ➤ For a diprotic acid, H₂A, titrated with a strong base there are two E-points and two buffer regions
 - > The net ionic equations of the titration are:

$$H_2A + OH^- \rightarrow H_2O + HA^-$$
 (1st E-point)
 $HA^- + OH^- \rightarrow H_2O + A^{2-}$ (2nd E-point)

Example: Titration of H_2SO_3 (a diprotic acid with pK_{al} = 1.85 and pK_{al} = 7.19) with NaOH

$$\begin{aligned} & \text{H}_2\text{SO}_3 + \text{OH}^- \rightarrow \text{H}_2\text{O} + \text{HSO}_3^- \\ & \text{HSO}_3^- + \text{OH}^- \rightarrow \text{H}_2\text{O} + \text{SO}_3^{2-} \end{aligned} \qquad (1^{\text{st}} \text{ E-point})$$

19.3 Equilibria of Slightly Soluble Ionic Compounds

- Slightly soluble ionic solids reach equilibrium with their saturated solutions at very low concentrations of the dissolved solute
- The dissolved portion of the ionic solid is assumed to be completely dissociated to ions (not always the case)

The Solubility-Product Constant (K_{sp})

For an ionic solid, M_pA_q , in equilibrium with its saturated solution, the equilibrium constant of the dissolution process is called **solubility-product**

$$M_p A_q(s) \leftrightarrow p M^{m+} + q A^{n-}$$

$$\boldsymbol{K}_{sp} = [\mathbf{M}^{m+}]^p [\mathbf{A}^{n-}]^q$$

Example: Write the solubility-product expression for Al(OH)₃.

→ The subscripts in the formula become powers in the solubility-product expression

$$\Rightarrow$$
 $K_{sp} = [Al^{3+}][OH^{-}]^{3}$

➤ Sulfides are slightly different since S²- acts as a strong base in water and converts entirely to OH-

Example: Ag₂S

$$Ag_2S(s) \leftrightarrow 2Ag^+ + S^{2-}$$

 $S^{2-} + H_2O(1) \rightarrow HS^- + OH^-$

- \oplus \rightarrow $Ag_2S(s) + H_2O(1) \leftrightarrow 2Ag^+ + HS^- + OH^-$
 - \Rightarrow $K_{sp} = [Ag^+]^2[HS^-][OH^-]$

• K_{sp} is a measure of the extent to which the solubility equilibrium proceeds to the right

$$\uparrow K_{sp} \Leftrightarrow \uparrow$$
Solubility

 $-K_{sp}$ depends on temperature

Calculations Involving K_{sp}

- **Molar solubility** (*s*) the molarity of the saturated solution (mol/L)
 - The solubility is often expressed in g/L or grams/100 mL of solution → can be easily converted to mol/L
 - $-K_{sp}$ can be experimentally determined by measuring the molar solubility, s
 - -s can be calculated if K_{sp} is known

Example: The solubility of Pb(IO₃)₂ is 0.022 g/L at 25°C. Calculate K_{sp} of Pb(IO₃)₂.

 \rightarrow Convert the solubility to molar solubility, s

$$s = 0.022 \frac{\text{g Pb(IO}_3)_2}{\text{L}} \times \frac{1 \text{ mol Pb(IO}_3)_2}{557 \text{ g Pb(IO}_3)_2} = 3.9 \times 10^{-5} \frac{\text{mol}}{\text{L}}$$

 \rightarrow Express K_{sp} through the molar solubility, s

$$Pb(IO_3)_2(s) \leftrightarrow Pb^{2+} + 2IO_3^{-1}$$

 $1 \text{ mol Pb}(IO_3)_2 \rightarrow 1 \text{ mol Pb}^{2+}$

1 mol Pb(IO_3)₂ \rightarrow 2 mol IO_3 ⁻

$$\Rightarrow$$
 [Pb²⁺] = s and [IO₃⁻] = 2 s

$$\Rightarrow K_{sp} = [Pb^{2+}][IO_3^{-1}]^2 = s(2s)^2 = 4s^3$$

 $\Rightarrow K_{sp} = 4 \times (3.9 \times 10^{-5})^3 = \boxed{2.5 \times 10^{-13}}$

- **Example:** The K_{sp} of Ag₂SO₄ is 1.4×10^{-5} at 24°C. Calculate the molar solubility of Ag₂SO₄.
- \rightarrow Express K_{sp} through the molar solubility, s

$$Ag_2SO_4(s) \leftrightarrow 2Ag^+ + SO_4^{2-}$$

$$\Rightarrow$$
 [Ag⁺] = 2s and [SO₄²⁻] = s

$$\Rightarrow K_{sp} = [Ag^+]^2 [SO_4^{2-}] = (2s)^2 s = 4s^3$$

$$\Rightarrow s^3 = K_{sp}/4$$
 $\Rightarrow s = (K_{sp}/4)^{1/3}$

$$\Rightarrow$$
 s = $(1.4 \times 10^{-5}/4)^{1/3} = \boxed{1.5 \times 10^{-2} \text{ M}}$

Note: The problem can be solved using an

ice	tabi	e.	
\rightarrow	K	$= (2s)^2s =$	$4c^3$

	$Ag_2SO_4(s) \leftrightarrow 2Ag^+ + SO_4^{2-}$				
i	excess	0	0		
c	-S	+2s	+s		
e	excess	2s	S		

 $\succ K_{sp}$ can be used as a guide in comparing molar solubilities of different ionic compounds (works only if the compounds have the same number of ions in the formula)

$$\uparrow K_{sp} \Leftrightarrow \uparrow s$$

	•			
Table 19.3	Relationship Between	K _{sp} and	Solubility	at 25°C

No. of lons	Formula	Cation:Anion	$K_{\rm sp}$	Solubility (M)
2	$MgCO_3$	1:1	3.5×10^{-8}	1.9×10^{-4}
2	PbSO ₄	1:1	1.6×10^{-8}	1.3×10^{-4}
2	BaCrO ₄	1:1	2.1×10^{-10}	1.4×10^{-5}
3	Ca(OH) ₂	1:2	6.5×10^{-6}	1.2×10^{-2}
3	BaF ₂	1:2	1.5×10^{-6}	7.2×10^{-3}
3	CaF ₂	1:2	3.2×10^{-11}	2.0×10^{-4}
3	Ag ₂ CrO ₄	2:1	2.6×10^{-12}	8.7×10^{-5}

The Common Ion Effect

For a slightly soluble ionic solid, MA

$$MA(s) \leftrightarrow M^{n+} + A^{n-}$$

$$\mathbf{K}_{sp} = [\mathbf{M}^{n+}][\mathbf{A}^{n-}]$$

- If Mⁿ⁺ is added by means of the soluble salt (MB), the equilibrium shifts to the left toward formation of more MA(s)
- MA and MB have a **common ion** (M^{n+})
- Similarly, if Aⁿ⁻ is added to the solution, the equilibrium also shifts to the left toward formation of more MA(s)
- ⇒The molar solubility decreases in the presence of common ions

Example: At a given temperature, K_{sp} of AgBr is 7.7×10⁻¹³. Estimate the solubility of AgBr in:

- a) Pure H₂O
- b) 0.10 M CaBr₂ solution

a) In pure H₂O

 \rightarrow Express K_{sp} through the molar solubility, s

	AgBr(s) ↔	Ag ⁺ +	Br-
i	excess	0	0
c	-S	+s	+s
e	excess	S	S

- \Rightarrow [Ag⁺] = s and
- [Br-] = s
- $\Rightarrow K_{sp} = [Ag^+][Br^-] = s^2$
- $\Rightarrow s = (K_{sp})^{1/2} = (7.7 \times 10^{-13})^{1/2} = 8.8 \times 10^{-7} \text{ M}$

b) In 0.10 M CaBr₂ solution

- $0.10~\mathrm{M~CaBr_2} \rightarrow 0.20~\mathrm{M~Br^-}$ (Br is the common ion)
- \rightarrow Express K_{sp} through the molar solubility, s

	$AgBr(s) \leftrightarrow Ag^+ + Br^-$			
i	excess	0	0.20	
c	-S	+5	+s	
e	excess	S	0.20 + s	

- $\Rightarrow \mathbf{K}_{sp} = [\mathrm{Ag}^+][\mathrm{Br}^-] = \mathbf{s}(0.20 + \mathbf{s})$
- \rightarrow Assume $s << 0.20 \implies K_{sp} = s(0.20)$
 - \Rightarrow $s = K_{sp}/0.20 = 7.7 \times 10^{-13}/0.20 = 3.8 \times 10^{-12} \text{ M}$
- \rightarrow Check assumption \rightarrow OK
 - ⇒ The solubility is much lower in 0.1 M CaBr₂

The Effect of *pH* on Solubility

- ➤ The solubility of some ionic solids in water is greatly affected by the *pH*
 - Metal hydroxides (Fe(OH)₃, Mg(OH)₂, ...) the anion (OH⁻) reacts with added H₃O⁺
 - ⇒The solubility can be improved by adding acids

Example: Mg(OH)₂

 $Mg(OH)_2(s) \leftrightarrow Mg^{2+} + 2OH^{-}$

- \rightarrow If acid (H₃O⁺) is added:
 - \rightarrow H₃O⁺ consumes OH⁻ (H₃O⁺ + OH⁻ \rightarrow 2H₂O)
 - →The equilibrium shifts to the right and the **solubility increases**

- Salts of weak acids (CaCO₃, BaSO₃, PbF₂, ZnS, ...) the anion of the salt is a weak base which reacts with added H₃O⁺
- ⇒The solubility can be improved by adding acids

Example: BaSO₃ (a salt of H₂SO₃)

 $BaSO_3(s) \leftrightarrow Ba^{2+} + SO_3^{2-}$

 \rightarrow If acid (H₃O⁺) is added:

 $SO_3^{2-} + H_3O^+ \rightarrow HSO_3^{-} + H_2O(1)$

- \rightarrow H₃O⁺ consumes SO₃²⁻
- →The equilibrium shifts to the right and the **solubility increases**

Example: $CaCO_3(s) \leftrightarrow Ca^{2+} + CO_3^{2-}$

 $CO_3^{2-} + 2H_3O^+ \rightarrow H_2CO_3 + H_2O(1) \rightarrow CO_2(g) + 2H_2O(1)$

Predicting Precipitation – Q_{sp} versus K_{sp}

- The reaction quotient of the dissolution process (Q_{sp}) is defined in the same way as K_{sp} and at equilibrium $Q_{sp} = K_{sp}$
- \triangleright To predict precipitation, compare Q_{sp} to K_{sp}
 - \rightarrow If $Q_{sp} > K_{sp}$, precipitation occurs
 - \rightarrow If $Q_{sp} < K_{sp}$, dissolution occurs (no precipitation)
 - \rightarrow If $\mathbf{Q}_{sp} = \mathbf{K}_{sp}$, no change occurs

Example: Does a precipitate form after mixing of 200. mL 1.0×10⁻⁴ M AgNO₃ with 900. mL 1.0×10⁻⁶ KCl?

$$(K_{sp} = 1.8 \times 10^{-10} \text{ for AgCl})$$

- \rightarrow AgNO₃(aq) + KCl(aq) \rightarrow AgCl(s) + KNO₃(aq)
- \rightarrow Net ionic equation: $Ag^+ + Cl^- \rightarrow AgCl(s)$
- \rightarrow Reverse: AgCl(s) \rightarrow Ag⁺ + Cl⁻

$$K_{sp} = [Ag^+][Cl^-] = 1.8 \times 10^{-10}$$

 $V_{tot} = 0.200 + 0.900 = 1.100 L$

→ Initial concentrations after mixing:

$$[Ag^{+}] = \frac{1.0 \times 10^{-4} \frac{\text{mol}}{\text{L}} \times 0.200 \text{ L}}{1.100 \text{ L}} = 1.8 \times 10^{-5} \frac{\text{mol}}{\text{L}}$$

[CI⁻] =
$$\frac{1.0 \times 10^{-6} \frac{\text{mol}}{\text{L}} \times 0.900 \text{ L}}{1.100 \text{ L}} = 8.2 \times 10^{-7} \frac{\text{mol}}{\text{L}}$$

$$\rightarrow$$
 Calculate Q_{sp} :

$$Q_{sp} = [Ag^+][Cl^-] = (1.8 \times 10^{-5}) \times (8.2 \times 10^{-7})$$

$$Q_{sn} = 1.5 \times 10^{-1}$$

$$Q_{sp} = 1.5 \times 10^{-11}$$

 $K_{sp} = 1.8 \times 10^{-10}$

$$\Rightarrow Q_{sp} < K_{sp}$$

⇒ No precipitation occurs

19.4 Equilibria Involving Complex Ions

- Complex ions consist of a metal cation surrounded by anions or neutral molecules called ligands
- Complex ions are **Lewis acid-base complexes** (adducts)
 - The metal cation is a Lewis acid
 - The ligands are Lewis bases

Formation of Complex Ions

For a metal cation, M^{n+} , and a neutral ligand, L, the complex formation is given by the equilibrium:

$$M^{n+} + mL \leftrightarrow M(L)_m^{n+}$$

$$K_f = \frac{[\mathbf{M}(\mathbf{L})_m^{n+}]}{[\mathbf{M}^{n+}][\mathbf{L}]^m}$$

 $K_f = \frac{[\mathbf{M}(\mathbf{L})_m^{n+}]}{[\mathbf{M}^{n+}][\mathbf{L}]^m}$ $K_f \to \text{formation constant}$ of the complex

 \triangleright In reality, the metal cation, \mathbf{M}^{n+} , is hydrated by several water molecules and the ligand, L, gradually replaces them one at a time in stepwise manner

replaces them one at a time in stepwise manner
$$M^{n+} + L \leftrightarrow ML^{n+} \qquad K_{f1}$$

$$ML^{n+} + L \leftrightarrow M(L)_{2}^{n+} \qquad K_{f2}$$

$$M(L)_{m-1}^{n+} + L \leftrightarrow M(L)_{m}^{n+} \qquad K_{fm}$$

$$M^{n+} + mL \leftrightarrow M(L)_{m}^{n+} \qquad K_{f}$$

$$K_{f}$$

$$K = K \times K \times K \times K$$
Note: Water has been omitted from the expressions
$$K_{f}$$

$$K_{f_2}$$

$$\underline{M(L)_{m-1}^{n+} + L} \longleftrightarrow M(L)_{m}^{n+}$$

 $K_f = K_{f1} \times K_{f2} \times ... \times K_{fm}$

- Complexes between good Lewis acids (such as highly charged and transition metal cations) and good Lewis bases (such as NH₃, CN⁻, OH⁻, ...) are extremely stable
 - Their K_f values are very large (>10⁵)
 - ⇒If enough ligand is present in the solution, almost the entire amount of the cation is converted to the complex $\rightarrow C_M \approx [M(L)_m^{n+}]$

Example: What is the concentration of Fe^{3+} after mixing of 25 mL 0.020 M Fe(NO₃)₃ solution with 25 mL 1.0 M KCN solution? ($K_f = 4.0 \times 10^{43}$ for the complex Fe(CN)₆³⁻)

- \rightarrow 0.020 M Fe(NO₃)₃ \rightarrow 0.020 M Fe³⁺
- \rightarrow 1.0 M KCN \rightarrow 1.0 M CN⁻

 \rightarrow After mixing, the total volume is 25 + 25 = 50 mL

$$\Rightarrow C_{Fe} = (0.020 \text{ M} \times 25 \text{ mL/} 50 \text{ mL}) = 0.010 \text{ M}$$

$$\Rightarrow$$
 $C_{CN} = (1.0 \text{ M} \times 25 \text{ mL/}50 \text{ mL}) = 0.50 \text{ M}$

	$Fe^{3+} + 6CN^{-} \leftrightarrow Fe(CN)_{6}^{3-}$			
i	0.010	0.50	0	
с	-x	-6x	+x	
e	0.010 - x	0.50 - 6x	x	
e'	у	0.44	0.010	

$$K_f = \frac{[\text{Fe}(\text{CN})_6^{3-}]}{[\text{Fe}^{3+}][\text{CN}^-]^6}$$
$$K_f = \frac{0.010}{y(0.44)^6}$$

 \rightarrow K_f is very large so almost the entire amount of Fe³⁺ is converted to the complex

$$\Rightarrow x \approx C_{Fe} \Rightarrow x \approx 0.010$$

$$\Rightarrow (0.50 - 6x) \approx (0.50 - 6 \times 0.010) = 0.44$$

 \rightarrow Define a new variable, $v = 0.010 - x = [Fe^{3+}]$

$$K_f = \frac{0.010}{y(0.44)^6}$$
 \Rightarrow $y = \frac{0.010}{K_f(0.44)^6}$
 $y = \frac{0.010}{4.0 \times 10^{43} (0.44)^6} = \boxed{3.4 \times 10^{-44} \text{ M} = [\text{Fe}^{3+}]}$

Complex Ions and Solubility of Precipitates

- The solubility of some ionic solids in water can be improved by the addition of an appropriate ligand (such as NH₃, CN⁻, ...)
 - The ligand (L) forms a complex with the cation of the slightly soluble salt and the solubility equilibrium shifts toward further dissolution

$$MA(s) \leftrightarrow M^{n+} + A^{n-}$$
 $M^{n+} + mL \leftrightarrow M(L)_m^{n+}$

Example: The solubility of AgCl can be improved by addition of ammonia, NH₃.

$$AgCl(s) \leftrightarrow Ag^{+} + Cl^{-}$$
 $K_{sp} = 1.8 \times 10^{-10}$
 $Ag^{+} + 2NH_{3}(aq) \rightarrow Ag(NH_{3})_{2}^{+}$ $K_{f} = 1.7 \times 10^{7}$

$$\oplus$$
 AgCl(s) + 2NH₃(aq) \leftrightarrow Ag(NH₃)₂⁺+ Cl⁻ (**K**)

$$\rightarrow K = K_{sp} \times K_f = 1.8 \times 10^{-10} \times 1.7 \times 10^7 = 3.1 \times 10^{-3}$$

- \rightarrow The overall equilibrium constant, K, is much larger than K_{sp}
- ⇒The addition of NH₃ shifts the equilibrium to the right and the **solubility increases**

Example: Calculate the molar solubility of AgCl in **0.10 M** NH₃ solution.

	$AgCl(s) + 2NH_3(aq) \leftrightarrow Ag(NH_3)_2^+ + Cl^-$			
i	excess	0.10	0	0
c	-S	-2 s	+s	+s
e	excess	0.10 - 2s	S	S

$$K = \frac{[\text{Ag(NH}_3)_2^+][\text{Cl}^-]}{[\text{NH}_3]^2} = \frac{s^2}{(0.10 - 2s)^2}$$

$$\frac{s}{0.1 - 2s} = \sqrt{K} \implies s = \frac{0.10\sqrt{K}}{1 + 2\sqrt{K}} = \frac{0.10\sqrt{3.1 \times 10^{-3}}}{1 + 2\sqrt{3.1 \times 10^{-3}}}$$
$$\implies s = 5.0 \times 10^{-3}$$

Note: The solubility of AgCl in 0.10 M NH₃ is higher than that in **pure water** which is:

$$s = (K_{sp})^{1/2} = (1.8 \times 10^{-10})^{1/2} = 1.3 \times 10^{-5} M$$

Complex Ions of Amphoteric Hydroxides

- Metals that form amphoteric oxides also form amphoteric hydroxides which react with both acids and bases
 - ➤ Have low solubility in pure water
 - ➤ Dissolve well in aqueous acids or bases
 - →The solubility in acids is due to a reaction with H₃O⁺ which shifts the solubility equilibrium toward dissolution (as discussed in 19.3)
 - →The solubility in bases is due to the formation of soluble complexes of the metal ions with OH-

➤ The solubility of amphoteric hydroxides can be explained as a complex formation process

Example: Al(OH)₃

- →In acidic solution OH⁻ ions are scarce so Al³⁺ is completely hydrated as Al(H₂O)₆³⁺
- →As the solution becomes less acidic and more basic, the OH ions gradually accept H⁺ from the hydrating water molecules

$$\begin{split} & \text{Al}(\text{H}_2\text{O})_6^{3+} + \text{OH}^- \longleftrightarrow \text{Al}(\text{H}_2\text{O})_5\text{OH}^{2+} + \text{H}_2\text{O}(\text{I}) \\ & \text{Al}(\text{H}_2\text{O})_5\text{OH}^{2+} + \text{OH}^- \longleftrightarrow \text{Al}(\text{H}_2\text{O})_4\text{(OH)}_2^+ + \text{H}_2\text{O}(\text{I}) \\ & \text{Al}(\text{H}_2\text{O})_4\text{(OH)}_2^+ + \text{OH}^- \longleftrightarrow \text{Al}(\text{H}_2\text{O})_3\text{(OH)}_3\text{(s)} + \text{H}_2\text{O}(\text{I}) \end{split}$$

- →The neutral complex of **Al** is insoluble
 - \Rightarrow A precipitate forms \rightarrow Al(H₂O)₃(OH)₃(s) \rightarrow usually written without the water as Al(OH)₃(s)
- →As the solution becomes even more basic, the OHions accept H⁺ from one of the 3 remaining water molecules

$$Al(H_2O)_3(OH)_3(s) + OH^- \leftrightarrow Al(H_2O)_2(OH)_4^- + H_2O(l)$$

- ⇒The precipitate dissolves due to the formation of the soluble negative complex ion
- ➤ Zn²+, Sn²+, Pb²+, ... exhibit similar behavior
- ➤ Other metals such as Fe²⁺, Fe³⁺, ... only form the neutral insoluble hydroxide complex which can not be dissolved in basic solution

19.5 Applications of Ionic Equilibria Selective Precipitation

- ➤ Mixtures of cations can be separated by selective precipitation with an anion if the solubilities of the precipitates are significantly different
 - \triangleright The concentration of the anion is selected in a way so that Q_{sp} is above K_{sp} for the less soluble ion and just below K_{sp} for the more soluble ion

Example: What is the maximum concentration of Cl⁻ that would precipitate only one of the ions in a solution that is **0.0010 M** in Ag⁺ and **0.020 M** in Pb²⁺? K_{sp} (AgCl) = 1.8×10⁻¹⁰; K_{sp} (PbCl₂) = 1.7×10⁻⁵

$$AgCl(s) \rightarrow Ag^+ + Cl^-$$

 $\mathbf{K}_{sp} = [\mathrm{Ag}^+][\mathrm{Cl}^-]$

 $PbCl_2(s) \rightarrow Pb^{2+} + 2Cl^{-}$

$$K_{sp} = [Pb^{2+}][Cl^{-}]^{2}$$

→ Calculate the concentrations of Cl⁻ at which precipitation of each ion begins:

$$[Cl^{-}] = \frac{K_{sp}}{[Ag^{+}]} = \frac{1.8 \times 10^{-10}}{0.0010} = 1.8 \times 10^{-7} \text{ M}$$

[Cl⁻] =
$$\sqrt{\frac{K_{sp}}{[Pb^{2+}]}}$$
 = $\sqrt{\frac{1.7 \times 10^{-5}}{0.020}}$ = 2.9×10⁻² M

- \rightarrow AgCl will precipitate first at [Cl⁻] > 1.8×10⁻⁷ M
- \rightarrow If [Cl⁻] < 2.9×10⁻² M, PbCl₂ will not precipitate
 - ⇒ The maximum [Cl⁻] is just below 2.9×10^{-2} M

Note: The concentration of unprecipitated Ag⁺ is:

$$[Ag^{+}] = K_{sp}/[C1^{-}] = 1.8 \times 10^{-10}/2.9 \times 10^{-2} = 6.2 \times 10^{-9} M$$