Ionic Equilibria in Aqueous Systems

19.1 Acid-Base Buffers

- Resist changes in \(pH \) upon addition of acids (H\(^+\)) or bases (OH\(^-\))

The Buffer Action

- Buffer solutions consist of two components
 - Acid component — reacts with added bases (OH\(^-\))
 - Base component — reacts with added acids (H\(^+\))
- The two components must be a conjugate acid-base pair
- The two components must be present in high concentrations

Weak acid buffer — a solution of the weak acid, HA, and its conjugate base, A\(^-\) (HF/F\(^-\), …)
- Add H\(_3\)O\(^+\) (acid) \(\rightarrow\) (A\(^-\) consumes the added H\(_3\)O\(^+\))
 \[H_3O^+ + A^- \rightarrow H_2O + HA\]
- Add OH\(^-\) (base) \(\rightarrow\) (HA consumes the added OH\(^-\))
 \[OH^- + HA \rightarrow H_2O + A^-\]

Weak base buffer — a solution of the weak base, B, and its conjugate acid, HB\(^+\) (NH\(_4^+\)/NH\(_3\), …)
- Add H\(_3\)O\(^+\) (acid) \(\rightarrow\) (B consumes the added H\(_3\)O\(^+\))
 \[H_3O^+ + B \rightarrow H_2O + HB^+\]
- Add OH\(^-\) (base) \(\rightarrow\) (HB\(^+\) consumes the added OH\(^-\))
 \[OH^- + HB^+ \rightarrow H_2O + B\]

⇒ The addition of H\(_3\)O\(^+\) and OH\(^-\) changes the relative amounts of the buffer components (HA/A\(^-\) or HB\(^+\)/B)

The pH of a Buffer

- For a weak acid buffer (HA/A\(^-\)), A\(^-\) can be supplied in solution by means of the salt, MA
- HA and A\(^-\) reach equilibrium
 \[HA + H_2O \leftrightarrow H_3O^+ + A^-\]
- The equation is valid only if \(C_a \) and \(C_b \) are large enough so that the assumptions \([HA] \approx C_a \) and \([A^-] \approx C_b \) are justified; If not, \([HA]\) and \([A^-]\) must be used
- Works if \(C_a > 100 \times K_a \) and \(C_b > 100 \times K_b \)
- If \(C_a = C_b, \log(C_a/C_b) = 0 \) and \(pH = pK_a \)
- If \(C_a \) and \(C_b \) are comparable, the \(pH \) of the buffer is close to the \(pK_a \) of the acid component
- Take a -log() of \([H_3O^+] = K_a(C_a/C_b)\)
 \[\log[H_3O^+] = -\log K_a - \log \frac{C_a}{C_b} = -\log K_a + \log \frac{C_b}{C_a}\]
 \[pH = pK_a + \log \frac{C_b}{C_a}\]
 \[\text{Henderson-Hasselbalch Equation}\]
 \[\Rightarrow \text{The equation is valid only if } C_a \text{ and } C_b \text{ are large enough so that the assumptions } [HA] \approx C_a \text{ and } [A^-] \approx C_b \text{ are justified; If not, } [HA] \text{ and } [A^-] \text{ must be used}\]
 \[\Rightarrow \text{Works if } C_a > 100 \times K_a \text{ and } C_b > 100 \times K_b\]
 \[\Rightarrow \text{If } C_a = C_b, \log(C_a/C_b) = 0 \text{ and } pH = pK_a\]
 \[\Rightarrow \text{If } C_a \text{ and } C_b \text{ are comparable, the } pH \text{ of the buffer is close to the } pK_a \text{ of the acid component}\]

Example: What is the \(pH \) of a buffer that is 0.50 M in HF and 0.50 M in KF? (\(K_a = 6.8 \times 10^{-4} \) for HF)

1. Use the Hend.-Hass. Eq. (HF – acid; F\(^-\) – base)
 \(C_a = 0.50 \quad C_b = 0.50\)
 \[pH = pK_a + \log(0.50/0.50) = pK_a + \log(1) = pK_a + 0\]
 \[pH = pK_a = -\log(6.8 \times 10^{-4}) = 3.17\]

2. Or use an ice table

\[
\begin{array}{c|c|c|c}
| i & [HF + H_2O] & [H_3O^+] & [F^-] \\
|---|---|---|---|
| 1 & 0.50 & 0.50 & 0.50 \\
| 2 & 0.50 - x & x & 0.50 + x \\
\end{array}
\]

\[K_a = \frac{[H_3O^+] [F^-]}{[HF]} = \frac{x(0.50 + x)}{(0.50 - x)} \approx \frac{x(0.50)}{(0.50)}\]

\[x = K_a = 6.8 \times 10^{-4} = [H_3O^+] \Rightarrow pH = -\log(6.8 \times 10^{-4}) = 3.17\]
Example: For 1.0 L of the same buffer, calculate the pH after the addition of 5.0 mL 2.0 M HCl.

→HCl is a strong acid and converts to H3O+ which reacts with F- from the buffer

→Calculate the starting moles of HF and F- in the buffer and the added moles of H3O+ from HCl

\[\text{HF} \rightarrow 1.0 \text{ L} \times 0.50 \text{ mol/L} = 0.50 \text{ mol} \]

\[\text{F}^- \rightarrow 1.0 \text{ L} \times 0.50 \text{ mol/L} = 0.50 \text{ mol} \]

\[\text{H}_3\text{O}^+ \rightarrow 0.0050 \text{ L} \times 2.0 \text{ mol/L} = 0.010 \text{ mol} \]

→Use an “srf” table (starting, reacted, final) to calculate the final moles of HF and F-

\[
\begin{array}{c|ccc}
\text{moles} & s & r & f \\
0.50 & 0.010 & - & 0.50 \\
-0.010 & -0.010 & +0.010 \\
0.49 & 0.00 & - & 0.51 \\
\end{array}
\]

→Use the Hend.-Hass. Eq. (HF – acid; F- – base)

\[
\text{pH} = pK_a + \log \frac{n_b}{n_a} = -\log(6.8 \times 10^{-1}) + \log \frac{0.49}{0.51} = 3.17 + (-0.02) = 3.15
\]

⇒ The pH is reduced by only 0.02 pH-units

- The addition of strong acids or bases to unbuffered solutions has a much greater effect on pH

Example: Calculate the pH after the addition of 5.0 mL 2.0 M HCl to 1.0 L of pure water.

→The pH of pure water is 7.00

→After addition of the strong acid HCl:

\[
\text{pH} = -\log(0.010) = 2.00
\]

⇒ The pH is reduced by 5.00 pH-units (a much larger change compared to the buffered solution)

Preparing Buffers

➢ Choose the conjugate acid-base pair (select a pair with an acid component having \(pK_a \) close to the desired buffer \(pH \))

➢ Calculate the ratio of \(C_b/C_a \) needed to achieve the desired buffer \(pH \) (use the Hend.-Hass. Eq.)

➢ Determine the buffer concentration and the amounts of the two components to be mixed

➢ Mix the components and adjust the pH (final pH may be slightly off and can be adjusted by adding strong acid or base)

➢ Buffers can also be prepared by partial neutralization of weak acids (or bases) with strong bases (or acids) (Ex: HF + KOH → KF + H2O; If only half of the HF is converted to KF → buffer)

Example: How many moles of NH4Cl must be added to 1.0 L of 0.20 M NH3 solution to get a buffer with \(pH = 9.35 \)? (\(K_b = 1.8 \times 10^{-5} \) for NH3)

→ Conjugate pair NH4+/NH3

\[
K_a = \frac{K_b}{K_w} = \frac{1.8 \times 10^{-5}}{1.0 \times 10^{-14}} = 1.8 \times 10^{9.5}
\]

\[
pK_a = -\log(1.8 \times 10^{9.5}) = 9.25
\]

\[
\text{pH} = pK_a + \log \frac{n_b}{n_a} = 9.25 + \log \frac{0.20}{n_a} \Rightarrow 9.35 = 9.25 + \log \frac{0.20}{n_a}
\]

\[
0.10 = \log \left(\frac{0.20}{n_a} \right) \Rightarrow 10^{0.10} = \frac{0.20}{n_a} \Rightarrow n_a = 0.20/10^{0.10} = 0.16 \text{ mol NH}_4^+ = 0.16 \text{ mol NH}_4\text{Cl}
\]

Buffer Capacity and Buffer Range

• Buffer capacity (\(BC \)) – a measure of the ability of the buffer to resist pH changes

\[\uparrow \uparrow C_a \text{ and } C_b \Rightarrow \uparrow \uparrow \text{Buffer capacity} \]

\[\uparrow C_a \text{ and } C_b \Rightarrow \text{Buffer capacity is higher for buffers with similar component concentrations (\(BC \) is highest when } C_a = C_b \) \]

• Buffer range (\(BR \)) – buffers act most efficiently when \(C_b/C_a \) is between 0.1 and 10

\[
pH = pK_a + \log(0.1) = pK_a - 1
\]

\[
pH = pK_a + \log(10) = pK_a + 1 \Rightarrow \text{BR} = pK_a \pm 1
\]
19.2 Acid-Base Titration Curves

- Titration curves – plots of pH versus the volume of titrant added during titration
- Equivalence point (E) – a point along the course of the titration at which the acid and the base are present in equivalent (stoichiometric) amounts and consume each other completely
 - Typically, the pH changes sharply at the E-point and this fact is used in the detection of the E-point
 - The titration is actually stopped at the end point
 - Ideally, the end point should be at the equivalence point, but in practice they can differ slightly due to imperfect detection of the E-point

Acid-Base Indicators

- Indicators – used to estimate the pH of solutions and to detect the E-point in titrations
 - Weak organic acids with general formula HIn
 - Exhibit different colors at different pH values
 - The colors are quite intense so only small amounts are needed for detection
 - Indicator range – a relatively narrow pH range over which the indicator changes color
 - If the E-point is within (or close to) the indicator range, the indicator changes color very close to E
 - The pH at the E-point must be known for the proper selection of an indicator

Strong Acid-Strong Base Titration Curves

- Strong acids and bases are completely converted to H₃O⁺ and OH⁻ in water solns.
 - The net ionic equation of the titration is: H₃O⁺ + OH⁻ → 2H₂O
 - At the E-point, pH = 7.00 (neutral)
 - To calculate the pH during the titration:
 1. Calculate the mmol of H₃O⁺ from the acid
 2. Calculate the mmol of OH⁻ from the base
 3. Calculate the excess mmol of H₃O⁺ or OH⁻ from the difference between (1) and (2)
 4. Calculate [H₃O⁺] or [OH⁻] from the excess and the total volume of the solution (Vₜot) → convert to pH

Example: Calculate the pH during the titration of 40.0 mL 0.100 M HCl with 0.100 M NaOH after the addition of 25.0 mL NaOH.

0.100 M HCl → 0.100 M H₂O⁺ = 0.100 mmol/mL
0.100 M NaOH → 0.100 M OH⁻ = 0.100 mmol/mL

1. H₃O⁺ → 40.0 mL × 0.100 mmol/mL = 4.00 mmol
2. OH⁻ → 25.0 mL × 0.100 mmol/mL = 2.50 mmol
3. Excess acid = 4.00 – 2.50 = 1.50 mmol H₂O⁺
4. Vₜot = 40.0 + 25.0 = 65.0 mL
 1.50 mmol / 65.0 mL = 0.0231 M H₃O⁺

pH = -log(0.0231) = 1.64 (acidic, before E-point)
A titration curve for the titration of a strong base with a strong acid looks like a mirror image of that for the titration of a strong acid with a strong base.

- **Characteristics** of strong acid-strong base t-curves
 - Slow pH changes before and after the E-point
 - A sharp pH change at the E-point (pH = 7.00) → 1-2 drops cause a pH change of 5-6 pH units
 - The vertical region of the t-curve is quite long (from pH ≈ 4 to pH ≈ 10)
 - Any indicator having a range within the vertical region of the t-curve can be used (the indicator range does not have to be at 7.00)

⇒ Phenolphthalein (8.3-10), Methyl red (4.3-6.2), Phenol red (6.8-8.3), … can all be used

Example: Calculate the pH during the titration of 20.0 mL 0.500 M HCl with 0.250 M Ba(OH)₂ after the addition of 21.0 mL Ba(OH)₂ 0.500 M HCl

1. H₃O⁺ → 20.0 mL × 0.500 mmol/mL = 10.0 mmol
2. OH⁻ → 21.0 mL × 0.500 mmol/mL = 10.5 mmol
3. Excess base = 10.5 – 10.0 = 0.50 mmol OH⁻
4. Vₜₒₜ = 20.0 + 21.0 = 41.0 mL

⇒ pH = pOH = -log(0.012) = 1.91
⇒ pH = 14.00 – 1.91 = 12.09 (basic, after E-point)

Weak Acid-Strong Base Titration Curves

- The strong base is completely converted to OH⁻ in water solution
 ⇒ The net ionic equation of the titration is:

 \[\text{HA} + \text{OH}^- \rightarrow \text{H}_2\text{O} + \text{A}^- \]

 ⇒ At the E-point, pH > 7.00 (basic) due to the presence of A⁻ which is a weak base

- **Regions** of the titration curve:
 1. Initial point → solution of the weak acid HA
 2. Before the E-point → buffer solution of the weak acid, HA, and its conjugate base, A⁻ (buffer region)
 3. At the E-point → solution of the weak base A⁻
 4. After the E-point → excess of OH⁻ from base

Example: Calculate the pH during the titration of 20.0 mL 0.500 M HCOOH with 0.500 M NaOH after the addition of 0.0, 10.0, 19.0, 20.0 and 21.0 mL NaOH

1) 0.0 mL NaOH added (Initial point):
 → A 0.500 M solution of the weak acid HCOOH

 \[\text{HCOOH} + \text{H}_2\text{O} \leftrightarrow \text{H}_3\text{O}^+ + \text{HCOO}^- \]

 \[K_a = \frac{[\text{H}_3\text{O}^+][\text{HCOO}^-]}{[\text{HCOOH}]} \]

 \[x = (0.500K_a)^{0.5} = (1.8 \times 10^{-4} \times 0.500)^{0.5} = 9.5 \times 10^{-3} = [\text{H}_3\text{O}^+] \]

 ⇒ pH = -log[H₃O⁺] = -log(9.5 × 10⁻³) = 2.02

2) 10.0 mL NaOH added (Half-way to the E-point):
 0.500 M HCOOH 0.500 M NaOH → 0.500 M OH⁻
 HCOOH → 20.0 mL × 0.500 mmol/mL = 10.0 mmol
 OH⁻ → 10.0 mL × 0.500 mmol/mL = 5.00 mmol

 \[\text{HCOOH} + \text{OH}^- \rightarrow \text{H}_2\text{O} + \text{HCOO}^- \]

 \[\begin{array}{c|c|c|c|c}
 \text{mmol} & \text{HCOOH} & \text{OH}^- & \text{H}_2\text{O} & \text{HCOO}^- \\
 \hline
 s & 10.0 & 5.00 & - & 0.00 \\
 r & -5.00 & -5.00 & - & +5.00 \\
 f & 5.00 & 0.00 & - & 5.00 \\
 \end{array} \]

 ⇒ The system is a buffer (HCOOH → a, HCOO⁻ → b)

 \[pH = pK_a + \log(n_b/n_a) = pK_a + \log(5.00/5.00) = pK_a + 0 \]

 ⇒ pH = pKₐ = -log(1.8 × 10⁻⁴) = 3.74

 ⇒ Half-way to the E-point → pH = pKₐ !!!
Cont: Titration of 20.0 mL 0.500 M HCOOH with 0.500 M NaOH

3) 19.0 mL NaOH added (Before the E-point):

0.500 M HCOOH + 0.500 M NaOH → 0.500 M OH⁻

\[\text{HCOOH} + \text{OH}^- \rightarrow \text{H}_2\text{O} + \text{HCOO}^- \]

\[\begin{array}{ccc} \text{mmol} \\ \text{s} & 10.0 & 9.50 \\ \text{r} & -9.50 & -9.50 \\ \text{f} & 0.50 & 0.00 \end{array} \]

The system is a buffer (HCOOH → \(a \), HCOO⁻ → \(b \))

\[\text{pH} = \text{pK}_a + \log\left(\frac{[b]}{[a]}\right) \]

\[\Rightarrow \text{pH} = 3.74 + 1.28 = 5.02 \]

4) 20.0 mL NaOH added (E-point):

0.500 M HCOOH + 0.500 M NaOH → 0.500 M OH⁻

\[\text{HCOOH} + \text{OH}^- \rightarrow \text{H}_2\text{O} + \text{HCOO}^- \]

\[\begin{array}{ccc} \text{mmol} \\ \text{s} & 10.0 & 10.0 \\ \text{r} & -10.0 & -10.0 \\ \text{f} & 0.00 & 0.00 \end{array} \]

\[\Rightarrow \text{A solution of the weak base HCOO}^- \]

\[V_{\text{tot}} = 20.0 + 20.0 = 40.0 \text{ mL} \]

⇒ \[\frac{10.0 \text{ mmol}}{40.0 \text{ mL}} = 0.250 \text{ M HCOO}^- \]

5) 21.0 mL NaOH added (After the E-point):

0.500 M HCOOH + 0.500 M NaOH → 0.500 M OH⁻

\[\text{HCOOH} + \text{OH}^- \rightarrow \text{H}_2\text{O} + \text{HCOO}^- \]

\[\begin{array}{ccc} \text{mmol} \\ \text{s} & 10.0 & 10.5 \\ \text{r} & -10.0 & -10.0 \\ \text{f} & 0.00 & 0.50 \end{array} \]

\[\Rightarrow \text{A solution of the excess strong base (OH⁻) and the weak base (HCOO⁻)} \]

\[V_{\text{tot}} = 20.0 + 21.0 = 41.0 \text{ mL} \]

0.50 mmol / 41.0 mL = 0.012 M OH⁻

\[\text{pOH} = -\log(0.012) = 1.91 \Rightarrow \text{pH} = 14.00 - 1.91 = 12.09 \]

Phenolphthalein is a suitable indicator since its range (8.3-10) is in the vertical part of the t-curve

Methyl red is not a suitable indicator since its range (4.3-6.2) is in the buffer region before the E-point (color changes over a broad volume range)

Weak base-Strong Acid Titration Curves

The strong acid is completely converted to \(\text{H}_3\text{O}^+ \) in water solution

\[\text{H}_3\text{O}^+ + \text{B} \rightarrow \text{HB}^- + \text{H}_2\text{O} \]

⇒ At the E-point, \(\text{pH} < 7.00 \) (acidic) due to the presence of \(\text{HB}^- \) which is a weak acid

Regions of the titration curve:

1. Initial point → solution of the weak base \(B \)
2. Before the E-point → buffer solution of the weak base, \(B \), and its conjugate acid, \(\text{HB}^- \) (buffer region)
3. At the E-point → solution of the weak acid \(\text{HB}^+ \)
4. After the E-point → excess of \(\text{H}_3\text{O}^+ \) from acid
Phenolphthalein is not a suitable indicator since its range (8.3-10) is in the buffer region before the E-point (color changes over a broad volume range).

Methyl red is a suitable indicator since its range (4.3-6.2) is in the vertical part of the t-curve.

A titration curve for the titration of a weak base with a strong acid looks like a mirror image of that for the titration of a weak acid with a strong base.

- Characteristics of t-curves involving weak acids/bases
 - Slow pH changes before and after the E-point and a sharp pH change at the E-point
 - At the E-point
 - pH > 7.00 for titration of weak acids
 - pH < 7.00 for titration of weak bases
 - Half-way to the E-point, pH equals \(pK_a \) of the weak acid (or the conjugate acid of the weak base)
 - The vertical region of the t-curve is shorter than the vertical region for strong acid-strong base titrations
 - A careful selection of the indicator is necessary

Titrations for Polyprotic Acids
- The loss of each proton results in a separate E-point and a separate buffer region
- For a diprotic acid, \(H_2A \), titrated with a strong base there are two E-points and two buffer regions
- The net ionic equations of the titration are:
 \[
 H_2A + OH^- \rightarrow H_2O + HA^- \quad (1\text{st E-point})
 \]
 \[
 HA^- + OH^- \rightarrow H_2O + A^{2-} \quad (2\text{nd E-point})
 \]

Example: Titration of \(H_2SO_3 \) (a diprotic acid with \(pK_{a1} = 1.85 \) and \(pK_{a2} = 7.19 \)) with NaOH

\[
H_2SO_3 + OH^- \rightarrow H_2O + HSO_3^- \quad (1\text{st E-point})
\]
\[
HSO_3^- + OH^- \rightarrow H_2O + SO_3^{2-} \quad (2\text{nd E-point})
\]

19.3 Equilibria of Slightly Soluble Ionic Compounds
- Slightly soluble ionic solids reach equilibrium with their saturated solutions at very low concentrations of the dissolved solute
- The dissolved portion of the ionic solid is assumed to be completely dissociated to ions (not always the case)

The Solubility-Product Constant (\(K_{sp} \))

- For an ionic solid, \(M_nA_m \), in equilibrium with its saturated solution, the equilibrium constant of the dissolution process is called solubility-product

\[
M_nA_m(s) \leftrightarrow nM^{m+} + mA^{n-} \\
K_{sp} = [M^{m+}]^n[A^{n-}]^m
\]
Example: Write the solubility-product expression for Al(OH)₃.

→ The subscripts in the formula become powers in the solubility-product expression

⇒ $K_{sp} = [Al^{3+}][OH^-]^3$

- Sulfides are slightly different since S²⁻ acts as a strong base in water and converts entirely to OH⁻

Example: Ag₂S

$Ag_2S(s) \leftrightarrow 2Ag^+ + S^{2-}$

$S^{2-} + H_2O(l) \leftrightarrow HS^- + OH^-$

$Ag_2S(s) + H_2O(l) \leftrightarrow 2Ag^+ + HS^- + OH^-$

⇒ $K_{sp} = [Ag^+]^2[HS^-][OH^-]$

K_{sp} is a measure of the extent to which the solubility equilibrium proceeds to the right

$\uparrow K_{sp} \iff \uparrow \text{Solubility}$

- K_{sp} depends on temperature

Calculations Involving K_{sp}

- **Molar solubility** (s) – the molarity of the saturated solution (mol/L)
 - The solubility is often expressed in g/L or grams/100 mL of solution → can be easily converted to mol/L
 - K_{sp} can be experimentally determined by measuring the molar solubility, s
 - s can be calculated if K_{sp} is known

Example:

- The solubility of Pb(IO₃)₂ is 0.022 g/L at 25°C. Calculate K_{sp} of Pb(IO₃)₂.

→ Convert the solubility to molar solubility, s

$s = \frac{0.022 \text{ g Pb(IO}_3)_2}{557 \text{ g Pb(IO}_3)_2 \text{ mol}} = 3.9 \times 10^{-5} \text{ mol/L}$

→ Express K_{sp} through the molar solubility, s

$Pb(IO}_3)_2(s) \leftrightarrow Pb^{2+} + 2IO_3^{-}$

1 mol Pb(IO₃)₂ → 1 mol Pb²⁺ + 2 mol IO₃⁻

$\Rightarrow [Pb^{2+}] = s$ and $[IO_3^-] = 2s$

$\Rightarrow K_{sp} = [Pb^{2+}][IO_3^-]^2 = s(2s)^2 = 4s^3$

$\Rightarrow K_{sp} = 4(3.9 \times 10^{-5})^3 = 2.5 \times 10^{-15}$

- K_{sp} can be used as a guide in comparing molar solubilities of different ionic compounds (works only if the compounds have the same number of ions in the formula)

$\uparrow K_{sp} \iff \uparrow s$

The Common Ion Effect

- For a slightly soluble ionic solid, MA

$MA(s) \leftrightarrow M^{n+} + A^{m-}$

$K_{sp} = [M^{n+}][A^{m-}]$

- If M^{n+} is added by means of the soluble salt (MB), the equilibrium shifts to the left toward formation of more MA(s)

- MA and MB have a common ion (M⁻)

- Similarly, if A^{m-} is added to the solution, the equilibrium also shifts to the left toward formation of more MA(s)

\Rightarrow The molar solubility decreases in the presence of common ions

Table 19.3 Relationship Between K_{sp} and Solubility at 25°C

<table>
<thead>
<tr>
<th>No. of Ions</th>
<th>Formula</th>
<th>Cation:Anion</th>
<th>K_{sp}</th>
<th>Solubility (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MgCO₃</td>
<td>1:1</td>
<td>3.5×10^{-8}</td>
<td>1.9×10⁻⁴</td>
</tr>
<tr>
<td>2</td>
<td>PbSO₄</td>
<td>1:1</td>
<td>1.6×10^{-8}</td>
<td>1.3×10⁻⁴</td>
</tr>
<tr>
<td>2</td>
<td>BaCrO₄</td>
<td>1:1</td>
<td>2.1×10^{-10}</td>
<td>1.4×10⁻⁵</td>
</tr>
<tr>
<td>3</td>
<td>Ca(OH)₂</td>
<td>1:2</td>
<td>6.5×10^{-6}</td>
<td>1.2×10⁻²</td>
</tr>
<tr>
<td>3</td>
<td>BaF₂</td>
<td>1:2</td>
<td>1.5×10^{-6}</td>
<td>7.2×10⁻³</td>
</tr>
<tr>
<td>3</td>
<td>CaF₂</td>
<td>1:2</td>
<td>3.2×10^{-11}</td>
<td>2.0×10⁻⁴</td>
</tr>
<tr>
<td>3</td>
<td>Ag₂CrO₄</td>
<td>2:1</td>
<td>2.6×10^{-12}</td>
<td>8.7×10⁻⁵</td>
</tr>
</tbody>
</table>
Example: At a given temperature, K_{sp} of AgBr is 7.7×10^{-13}. Estimate the solubility of AgBr in:

a) Pure H$_2$O

b) 0.10 M CaBr$_2$ solution

a) In pure H$_2$O

- Express K_{sp} through the molar solubility, s:

 $[Ag^+] = s$ and $[Br^-] = s$
 $K_{sp} = [Ag^+][Br^-] = s^2$

- $s = (K_{sp})^{1/2} = (7.7 \times 10^{-13})^{1/2} = 8.8 \times 10^{-7}$ M

```
<table>
<thead>
<tr>
<th></th>
<th>$i$</th>
<th>$e$ excess</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgBr(s)</td>
<td>+s</td>
<td>$s$</td>
</tr>
<tr>
<td>Ag^+ + Br-</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

$\Rightarrow [Ag^+] = s$ and $[Br^-] = s$

$K_{sp} = [Ag^+][Br^-] = s^2$

$\Rightarrow s = (K_{sp})^{1/2} = (7.7 \times 10^{-13})^{1/2} = 8.8 \times 10^{-7}$ M

b) In 0.10 M CaBr$_2$ solution

- 0.10 M CaBr$_2$ solution
- $0.20 M$ Br$^-$ (Br$^-$ is the common ion)

- Express K_{sp} through the molar solubility, s

- Assume $s << 0.20$

 $K_{sp} = s(0.20)$

- $s = K_{sp}/0.20 = 7.7 \times 10^{-13}/0.20 = 3.8 \times 10^{-12}$ M

- Check assumption → OK

\Rightarrow The solubility is much lower in 0.1 M CaBr$_2$

The Effect of pH on Solubility

- The solubility of some ionic solids in water is greatly affected by the pH

 - **Metal hydroxides** (Fe(OH)$_3$, Mg(OH)$_2$, …) – the anion (OH$^-$) reacts with added H$_3$O$^+$

 \Rightarrow The solubility can be improved by adding acids

 Example: Mg(OH)$_2$

 - Mg(OH)$_2$(s) \leftrightarrow Mg$^{2+}$ + 2OH$^-$
 - If acid (H$_3$O$^+$) is added:

 \Rightarrow H$_3$O$^+$ consumes OH$^-$ (H$_3$O$^+$ + OH$^-$ \rightarrow 2H$_2$O)

 \Rightarrow The equilibrium shifts to the right and the solubility increases

- **Salts of weak acids** (CaCO$_3$, BaSO$_3$, PbF$_2$, ZnS, …) – the anion of the salt is a weak base which reacts with added H$_3$O$^+$

 \Rightarrow The solubility can be improved by adding acids

 Example: BaSO$_3$ (a salt of H$_2$SO$_3$)

 - BaSO$_3$(s) \leftrightarrow Ba$^{2+}$ + SO$_3^{2-}$
 - If acid (H$_3$O$^+$) is added:

 SO$_3^{2-}$ + H$_3$O$^+$ \rightarrow HSO$_3^-$ + H$_2$O(l) (solubility increases)

 \Rightarrow H$_3$O$^+$ consumes SO$_3^{2-}$

 \Rightarrow The equilibrium shifts to the right and the solubility increases

 Example: CaCO$_3$(s) \leftrightarrow Ca$^{2+}$ + CO$_3^{2-}$

 - CO$_3^{2-}$ + 2H$_3$O$^+$ \rightarrow H$_2$CO$_3$ + H$_2$O(l) \rightarrow CO$_2$(g) + 2H$_2$O(l)

Predicting Precipitation – Q_{sp} versus K_{sp}

- The reaction quotient of the dissolution process (Q_{sp}) is defined in the same way as K_{sp} and at equilibrium $Q_{sp} = K_{sp}$

- To predict precipitation, compare Q_{sp} to K_{sp}

 - If $Q_{sp} > K_{sp}$, precipitation occurs
 - If $Q_{sp} < K_{sp}$, dissolution occurs (no precipitation)
 - If $Q_{sp} = K_{sp}$, no change occurs

Example: Does a precipitate form after mixing of 200. mL 1.0×10$^{-4}$ M AgNO$_3$ with 900. mL 1.0×10$^{-6}$ KCl?

($K_{sp} = 1.8 \times 10^{-10}$ for AgCl)

> AgNO$_3$(aq) + KCl(aq) \rightarrow AgCl(s) + KNO$_3$(aq)

- Net ionic equation: Ag$^+$ + Cl$^-$ \rightarrow AgCl(s)

- Reverse: AgCl(s) \rightarrow Ag$^+$ + Cl$^-$

 $K_{sp} = [Ag^+][Cl^-] = 1.8 \times 10^{-10}$

 $V_{tot} = 0.200 + 0.900 = 1.100$ L

 Initial concentrations after mixing:

 $\frac{1.0 \times 10^{-4} \text{mol}}{L} \times \frac{0.200 \text{L}}{} = \frac{1.8 \times 10^{-5} \text{mol}}{L}$

 $\frac{1.0 \times 10^{-6} \text{mol}}{L} \times \frac{0.900 \text{L}}{} = \frac{8.2 \times 10^{-7} \text{mol}}{L}$
→ Calculate \(Q_{sp} \):
\[
Q_{sp} = [Ag^+][Cl^-] = (1.8 \times 10^{-5}) \times (8.2 \times 10^{-7})
\]
\[
Q_{sp} = 1.5 \times 10^{-11}
\]
⇒ \(Q_{sp} < K_{sp} \)
⇒ No precipitation occurs

19.4 Equilibria Involving Complex Ions

- Complex ions consist of a metal cation surrounded by anions or neutral molecules called ligands
- Complex ions are Lewis acid-base complexes (adducts)
 - The metal cation is a Lewis acid
 - The ligands are Lewis bases

Formation of Complex Ions

For a metal cation, \(M^{n+} \), and a neutral ligand, \(L \), the complex formation is given by the equilibrium:

\[
M^{n+} + mL \leftrightarrow M(L)^{m+n}
\]

- \(K_f \) is very large so almost the entire amount of \(Fe^{3+} \) is converted to the complex

\[
x \approx C_{Fe} \Rightarrow x \approx 0.010
\]

\[
(0.50 - 6x) \approx (0.50 - 6 \times 0.010) = 0.44
\]

Define a new variable, \(y = 0.010 - x = [Fe^{3+}] \)
Example: The solubility of AgCl can be improved by addition of ammonia, NH₃.

\[\text{AgCl(s)} \rightleftharpoons \text{Ag}^+ + \text{Cl}^- \quad K_{sp} = 1.8 \times 10^{-10} \]

\[\text{Ag}^+ + 2\text{NH}_3(\text{aq}) \rightleftharpoons \text{Ag(NH}_3)_2^+ \quad K_f = 1.7 \times 10^7 \]

Using the expression for the overall equilibrium constant, \(K = K_{sp} \times K_f \):

\[s = (K_{sp})^{1/2} = (1.8 \times 10^{-10})^{1/2} = 1.3 \times 10^{-5} \text{ M} \]

The solubility of AgCl in 0.10 M NH₃ is higher than that in pure water.

Example: Calculate the molar solubility of AgCl in 0.10 M NH₃ solution.

Complex Ions of Amphoteric Hydroxides

- Metals that form amphoteric oxides also form amphoteric hydroxides which react with both acids and bases.
- Have low solubility in pure water
- Dissolve well in aqueous acids or bases
 - The solubility in acids is due to a reaction with \(\text{H}_3\text{O}^+ \) which shifts the solubility equilibrium toward dissolution (as discussed in 19.3)
 - The solubility in bases is due to the formation of soluble complexes of the metal ions with \(\text{OH}^- \)

The neutral complex of Al is insoluble
- A precipitate forms \(\text{Al(H}_2\text{O)}_3(\text{OH})_2(\text{s}) \rightarrow \text{Al(H}_2\text{O)}_3(\text{OH})_2(\text{s}) \)
- As the solution becomes even more basic, the \(\text{OH}^- \) ions accept \(\text{H}^+ \) from one of the 3 remaining water molecules

19.5 Applications of Ionic Equilibria

Selective Precipitation

- Mixtures of cations can be separated by selective precipitation with an anion if the solubilities of the precipitates are significantly different
- The concentration of the anion is selected in a way so that \(Q_{sp} \) is above \(K_{sp} \) for the less soluble ion and just below \(K_{sp} \) for the more soluble ion

Example: What is the maximum concentration of Cl⁻ that would precipitate only one of the ions in a solution that is 0.0010 M in Ag⁺ and 0.020 M in Pb²⁺?

\[K_{sp}(\text{AgCl}) = 1.8 \times 10^{-10}; \quad K_{sp}(\text{PbCl}_2) = 1.7 \times 10^{-5} \]
AgCl(s) → Ag⁺ + Cl⁻ \[K_{sp} = [Ag^+][Cl^-]\]
PbCl₂(s) → Pb²⁺ + 2Cl⁻ \[K_{sp} = [Pb^{2+}][Cl^-]^2\]

→ Calculate the concentrations of Cl⁻ at which precipitation of each ion begins:

\[\text{[Cl⁻]} = \frac{K_{sp}}{[Ag^+]} = \frac{1.8 \times 10^{-10}}{0.0010} = 1.8 \times 10^{-7} \text{ M}\]

\[\text{[Cl⁻]} = \sqrt[2]{\frac{K_{sp}}{[Pb^{2+}]} = \sqrt[2]{\frac{1.7 \times 10^{-5}}{0.020} = 2.9 \times 10^{-2} \text{ M}}}\]

→ AgCl will precipitate first at [Cl⁻] > 1.8×10⁻⁷ M

→ If [Cl⁻] < 2.9×10⁻² M, PbCl₂ will not precipitate

⇒ The maximum [Cl⁻] is just below \[2.9 \times 10^{-2} \text{ M}\]

Note: The concentration of unprecipitated Ag⁺ is:

\[[Ag^+] = \frac{K_{sp}}{[Cl^-]} = 1.8 \times 10^{-10}/2.9 \times 10^{-2} = 6.2 \times 10^{-9} \text{ M}\]