Thermodynamics: The Direction of Chemical Reactions

- Thermodynamics has two major aspects:
- Conservation of energy ($1^{\text {st }}$ law)
- Direction of processes ($2^{\text {nd }}$ law)

20.1 The $2^{\text {nd }}$ Law of Thermodynamics

- Spontaneous changes - occur without any external influence
Examples: Aging, rusting, heat transfer from hot to cold, expansion of gases into vacuum, etc.

Limitations of the $1^{\text {st }}$ Law
$>$ The $1^{\text {st }}$ law states that the total energy of the universe is constant ($E_{\text {univ }}=$ const.)
$\rightarrow \boldsymbol{E}_{\text {univ }}$ can be separated into two parts, energy of the system, $\boldsymbol{E}_{\text {sys }}$, and energy of its surroundings, $\boldsymbol{E}_{\text {surr }}$
$\Rightarrow \boldsymbol{E}_{u n i v}=\boldsymbol{E}_{\text {sys }}+\boldsymbol{E}_{\text {surr }} \Rightarrow \Delta \boldsymbol{E}_{\text {univ }}=\Delta \boldsymbol{E}_{\text {sys }}+\Delta \boldsymbol{E}_{\text {surr }}$ \rightarrow Since $\boldsymbol{E}_{\text {univ }}=$ const., $\Delta \boldsymbol{E}_{\text {univ }}=0$

$$
\Rightarrow \Delta E_{\text {sys }}+\Delta E_{\text {surr }}=0 \Rightarrow \Delta E_{\text {sys }}=-\Delta E_{\text {surr }}
$$

\rightarrow Since $\Delta E=q+\boldsymbol{w} \quad \Rightarrow(q+\boldsymbol{w})_{\text {sys }}=-(\boldsymbol{q}+\boldsymbol{w})_{\text {surr }}$
\rightarrow Energy (heat and/or work) released by the system is absorbed by its surroundings and vice versa
\rightarrow The $1^{\text {st }}$ law doesn't explain the direction of spontaneous processes since energy conservation can be achieved in either direction

The Meaning of Disorder and Entropy

$>$ Macro-state - the macroscopic state of a system described by its parameters (P, V, n, T, E, H, etc.)
$>$ Spontaneous processes proceed from macro-states that are less probable toward ones that are more probable
$>$ Micro-state - one of the possible microscopic ways through which the macro-state can be achieved
$>$ Refers to one of the possible ways the total energy can be distributed over the quantized energy levels of the system
$>$ This includes energy levels related to all possible motions of the molecules (translational, rotational, vibrational, etc.)
$>$ More probable macro-states are those that can be achieved in a larger number of different ways (micro-states), and therefore, are more disordered

- Nonspontaneous changes - require an external force or energy in order to occur
Examples: Refrigeration (heat transfer from cold to hot), evacuation of flasks by vacuum pumps, etc.
- If a process is spontaneous in one direction, it is not spontaneous in the other
Example: At $-20^{\circ} \mathrm{C}$, water freezes spontaneously, but ice does not melt spontaneously:

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) & \text { spontaneous } \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \text { nonspontaneous }
\end{array}
$$

Example: At $25^{\circ} \mathrm{C}$:
$2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ spontaneous
$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ nonspontaneous
$>$ In thermodynamics, the disorder of a macro-state is measured by the statistical probability, $\boldsymbol{W} \rightarrow$ the number of different ways the energy can be distributed over the quantized energy levels of the system while still having the same total energy, or simply the number of micro-states through which the macro-state can be achieved

Example: Arrangement of 2 particles (\mathbf{x} and $\mathbf{0}$) in 3 possible positions \rightarrow| 1 | 2 | 3 |
| :--- | :--- | :--- |

\rightarrow There are 6 possible
arrangements ($\boldsymbol{W}=6$)
\rightarrow Increasing the \# of possible positions increases \boldsymbol{W}

$\uparrow \boldsymbol{W} \Leftrightarrow \uparrow$ Disorder

- $\operatorname{Entropy}(\boldsymbol{S})$ - a state function related to the disorder of the system
- Boltzmann equation $\rightarrow \boldsymbol{S}=\boldsymbol{k} \ln (\boldsymbol{W})$
$\rightarrow \boldsymbol{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ (Boltzmann constant)

$\uparrow W \Leftrightarrow \uparrow$ Disorder $\Leftrightarrow \uparrow S$

$-\boldsymbol{S}$ is a state function - depends only on the present state of the system and not on the way it arrived in that state
\Rightarrow The entropy change, $\Delta \boldsymbol{S}=\boldsymbol{S}_{\text {final }}-\boldsymbol{S}_{\text {initial }}$, is path independent
\Rightarrow If $\boldsymbol{\Delta S}>\mathbf{0}$, the entropy and the disorder increase
\Rightarrow If $\boldsymbol{\Delta S}<\mathbf{0}$, the entropy and the disorder decrease

Entropy and the 2 ${ }^{\text {nd }}$ Law

$>$ The entropy of the system alone can not be used as a criterion for spontaneity
$>$ Spontaneous processes can have $\Delta \boldsymbol{S}>\mathbf{0}$ or $\Delta \boldsymbol{S}<\mathbf{0}$
The true criterion for spontaneity is the entropy of the universe ($\boldsymbol{S}_{\text {univ }}$)

- The $2^{\text {nd }}$ law of thermodynamics - for any spontaneous process, the entropy of the universe increases ($\Delta \boldsymbol{S}_{\text {univ }}>0$)

$$
\Rightarrow \Delta \boldsymbol{S}_{\text {univ }}=\Delta \boldsymbol{S}_{\text {sys }}+\Delta \boldsymbol{S}_{\text {surr }}>0
$$

- There are no restrictions on the signs of $\Delta \boldsymbol{S}_{\text {sys }}$ and $\Delta \boldsymbol{S}_{\text {surr }}$ as long as the sum of the two is greater than zero
- The entropy and the disorder of a system can be increased in two basic ways:
- Heating (increases the thermal disorder)
- Expansion, mixing or phase changes (increase the positional disorder)
Note: Both thermal and positional disorder have the same origin (the number of possible micro-states)
Example: Gases expand spontaneously in vacuum.
\rightarrow During the expansion the total energy does not change (no heat is exchanged and no work is done since $\boldsymbol{P}_{\text {ext }}=0$)
\rightarrow The volume increases so the number of possible positions available to the particles increases $\Rightarrow \boldsymbol{W} \uparrow$
\Rightarrow The process is driven by increase in the positional disorder and thus increase in the entropy

Standard Molar Entropies and the 3 ${ }^{\text {rd }}$ Law

- The $3^{\text {rd }}$ law of thermodynamics - the entropy of a perfect crystal at the absolute zero is zero (As $\boldsymbol{T} \rightarrow 0 \mathrm{~K}, \boldsymbol{S}_{\text {sys }} \rightarrow 0$)
- At the absolute zero, the particles of the crystal achieve the lowest possible energy and there is only one way they can be arranged ($\boldsymbol{W}=1$)
$\Rightarrow S_{s y s}=k \ln (1)=k(0)=0$
- The $3^{\text {rd }}$ law allows the use of absolute entropies
\Rightarrow The entropy of a substance at a given \boldsymbol{T} is equal to the entropy increase accompanying the heating of the substance from 0 K that \boldsymbol{T}
- Standard molar entropy ($\left.\boldsymbol{S}^{\boldsymbol{o}}\right)$ - the entropy of 1 mol of a substance in its standard state and a specified temperature (usually 298 K)
- Standard state - 1 atm for gases, 1 M for solutions, pure for liquids and solids
- Units of $\boldsymbol{S}^{o} \rightarrow \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
- $\boldsymbol{S}^{\boldsymbol{o}}$ can be affected by changing the thermal and positional disorder in different ways
$>$ Temperature changes - for a given substance, $\boldsymbol{S}^{\boldsymbol{o}}$ increases as the temperature is increased

$$
\uparrow \boldsymbol{T} \Rightarrow \uparrow \boldsymbol{S}^{o}
$$

\rightarrow As $\boldsymbol{T} \uparrow$, the average $\boldsymbol{E}_{\boldsymbol{k}}$ of the molecules \uparrow and the \# of ways to distribute $\boldsymbol{E}_{\boldsymbol{k}}$ among the particles \uparrow so \boldsymbol{W} and $\boldsymbol{S}^{\boldsymbol{o}} \uparrow$
$>$ Phase changes - for a given substance, $\boldsymbol{S}^{\boldsymbol{o}}$ increases as the substance is converted from solid to liquid to gas

$$
S_{(\text {solid })}^{o}<S_{\text {(liquid) })}^{o}<S_{(\text {gas })}^{o}
$$

\rightarrow In the liquid and especially in the gas phase, the particles have more freedom to move around an thus higher positional disorder
\Rightarrow Within each phase, the entropy increases gradually with increasing \boldsymbol{T}
\Rightarrow Since phase changes occur at constant \boldsymbol{T}, a sharp change in entropy is observed as the \boldsymbol{T} passes through the melting or boiling points
\Rightarrow Since the gas phase has much higher $\boldsymbol{S}^{\boldsymbol{o}}$ than the liquid and solid phases, $\Delta \boldsymbol{S}^{o}{ }_{\text {vap }} \gg \Delta \boldsymbol{S}_{\text {fus }}^{o}$

> Dissolution of gases

$\rightarrow \boldsymbol{S}^{\boldsymbol{o}}$ decreases as gases dissolve in liquids or solids
\rightarrow The molecules of the gas are more restricted in solution, so $\boldsymbol{S}^{\bullet} \downarrow$

Dissolving gases $\Rightarrow S^{\circ} \downarrow$
$\rightarrow \boldsymbol{S}^{\boldsymbol{o}}$ increases as gases are mixed with each other \rightarrow Mixing increases the positional disorder, so $\boldsymbol{S}^{\boldsymbol{} \uparrow}$

$$
\text { Mixing of gases } \Rightarrow S^{\circ} \uparrow
$$

$>$ Atomic size or molecular complexity
\rightarrow For elements and for similar compounds in the same phase, $\boldsymbol{S}^{\boldsymbol{o}}$ increases with the molar mass (the \# of electrons \uparrow, so $\boldsymbol{S}^{\boldsymbol{} \uparrow \text {) }}$

Molar mass $\uparrow \Rightarrow S^{0} \uparrow$

Standard molar entropy (continued)

- $\boldsymbol{S}^{\boldsymbol{o}}$ can be affected by changing the thermal and positional disorder in different ways

$>$ Dissolution of solids or liquids

\rightarrow Usually $\boldsymbol{S}^{\boldsymbol{o}}$ increases as solids or liquids dissolve \rightarrow Mixing increases the positional disorder, so $\boldsymbol{S}^{\boldsymbol{o} \uparrow}$

Dissolving liquids $\&$ solids $\Rightarrow \boldsymbol{S}^{\boldsymbol{o} \uparrow}$
\rightarrow Sometimes \boldsymbol{S}^{o} decreases as substances dissolve, especially for ionic solids with small highly charged ions $\left(\mathrm{Al}^{3+}, \mathrm{Mg}^{2+} \ldots\right)$
\rightarrow Extensive ion hydration decreases the positional disorder of the water molecules which overcomes the increase in the disorder due to mixing, so $\boldsymbol{S}^{o} \downarrow$

Hydration $\Rightarrow \boldsymbol{S}^{\circ} \downarrow$
\rightarrow For compounds in the same phase, $\boldsymbol{S}^{\boldsymbol{o}}$ increases with the chemical complexity ($\boldsymbol{S}^{\circ} \uparrow$ with the number of atoms in the compound)

$$
\text { \# atoms } \uparrow \Rightarrow S^{o \uparrow}
$$

\rightarrow For organic compounds in the same phase, $\boldsymbol{S}^{\boldsymbol{o}}$ increases with the length of the hydrocarbon chain

$$
\text { Length of chain } \uparrow \Rightarrow S^{o \uparrow}
$$

\rightarrow The effect of the physical state on \boldsymbol{S}^{o} usually dominates the effect of molecular complexity

Examples: Which of the following has higher $\boldsymbol{S}^{\boldsymbol{o}}$
a) Air at $25^{\circ} \mathrm{C}$ or air at $35^{\circ} \mathrm{C}$
$\rightarrow \boldsymbol{S}^{\boldsymbol{o}}$ increases with \boldsymbol{T}
b) $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$ at $25^{\circ} \mathrm{C}$ or $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ at $25^{\circ} \mathrm{C}$
$\rightarrow \boldsymbol{S}^{\boldsymbol{o}}$ increases from liquid to gas
c) NaCl (s) at $25^{\circ} \mathrm{C}$ or NaCl (aq) at $25^{\circ} \mathrm{C}$
$\rightarrow \boldsymbol{S}^{o}$ typically increases with dissolution of solids
d) $\mathrm{N}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$ or $\mathrm{N}_{2}(\mathrm{aq})$ at $25^{\circ} \mathrm{C}$
$\rightarrow \boldsymbol{S}^{o}$ decreases with dissolution of gases
e) $\mathrm{HCl}(\mathrm{g})$ at $25^{\circ} \mathrm{C}$ or $\mathrm{HBr}(\mathrm{g})$ at $25^{\circ} \mathrm{C}$
$\rightarrow \boldsymbol{S}^{\boldsymbol{o}}$ increases with increasing the molar mass
f) $\mathrm{CO}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$ or $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ at $25^{\circ} \mathrm{C}$
$\rightarrow \boldsymbol{S}^{\boldsymbol{o}}$ increases with increasing the molecular complexity (\# atoms)

20.2 Calculating the Entropy Change of a Reaction

Entropy Changes in the System

- Standard entropy of reaction $\left(\Delta S_{r}{ }^{o}\right)$ - the difference between the standard entropies of the products and the reactants

$$
\Delta S_{r}^{o}=\Sigma m S^{o}(\text { products })-\Sigma n S^{o}(\text { reactants })
$$

($\boldsymbol{n}, \boldsymbol{m}$ - stoichiometric coefficients of reactants or products)
\rightarrow The equation is similar to the Hess's law expression for the standard reaction enthalpy $\Delta H_{r}{ }^{o}=\Sigma m \Delta H_{f}{ }^{\boldsymbol{o}}$ (products) $-\Sigma n \Delta H_{f}{ }^{\boldsymbol{o}}$ (reactants)

Example: Calculate the standard entropy $\left(\Delta \boldsymbol{S}_{r}{ }^{\circ}\right)$ of the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
$\Delta \boldsymbol{S}_{r}{ }^{\boldsymbol{o}}=\Sigma \boldsymbol{m} \boldsymbol{S}^{\boldsymbol{o}}$ (products) $-\Sigma \boldsymbol{n} \boldsymbol{S}^{\boldsymbol{o}}$ (reactants)
$\Delta \boldsymbol{S}_{r}{ }^{\boldsymbol{o}}=2 \times \boldsymbol{S}^{\boldsymbol{o}}\left(\mathrm{NO}_{2}(\mathrm{~g})\right)-1 \times \boldsymbol{S}^{\boldsymbol{o}}\left(\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right)$
\rightarrow From Appendix B:
$\Delta \boldsymbol{S}_{r}{ }^{\boldsymbol{o}}=2 \mathrm{~mol} \times 239.9 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}-1 \mathrm{~mol} \times 304.3 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$ $\Delta S_{r}{ }^{o}=175.5 \mathrm{~J} / \mathrm{K}$
$>$ For reactions involving gases:
$>\Delta S_{r}{ }^{o}>0$ if (\# mol gaseous products) $>(\# \mathrm{~mol}$ gaseous reactants)
$>\Delta \boldsymbol{S}_{r}{ }^{\circ}<\mathbf{0}$ if (\# mol gaseous products) $<(\# \mathrm{~mol}$ gaseous reactants)

Entropy Changes in the Surroundings
$>$ The surroundings function as a heat sink for the system (reaction) $\rightarrow \boldsymbol{q}_{\text {surr }}=-\boldsymbol{q}_{s y s}$
$>$ Exothermic reactions - heat is lost by the system and gained by the surroundings which increases the thermal disorder in the surroundings
$\rightarrow \boldsymbol{q}_{\text {sys }}<0 \Rightarrow \boldsymbol{q}_{\text {surr }}>0$ and $\Delta \boldsymbol{S}_{\text {surr }}>0$
$>$ Endothermic reactions - heat is gained by the system and lost by the surroundings which reduces the thermal disorder in the surroundings
$\rightarrow \boldsymbol{q}_{\text {sys }}>0 \Rightarrow \boldsymbol{q}_{\text {surr }}<0$ and $\Delta \boldsymbol{S}_{\text {surr }}<0$
$\Delta \boldsymbol{S}_{\text {surr }}$ is proportional to the amount of heat transferred $\rightarrow \Delta S_{\text {surr }} \propto \boldsymbol{q}_{\text {surr }} \Rightarrow \Delta S_{\text {surr }} \propto-\boldsymbol{q}_{\text {sys }}$

Substituting $\Delta \boldsymbol{S}_{\text {surr }}$ with $-\Delta \boldsymbol{H}_{\text {sys }} / \boldsymbol{T}$ leads to

$$
\Delta S_{u n i v}=\Delta S_{s y s}-\frac{\Delta H_{s y s}}{T}>0
$$

\rightarrow The equation allows the calculation of $\Delta \boldsymbol{S}_{\text {univ }}$ from the reaction entropy and enthalpy and the temperature (applies strictly at constant \boldsymbol{T} and \boldsymbol{P})
\rightarrow The equation provides a criterion for
spontaneity in any systems at constant \boldsymbol{T} and \boldsymbol{P}
Positive $\Delta \boldsymbol{S}_{\text {univ }}$ (spontaneous process) is favored by
$>$ Positive entropy of reaction $\left(\Delta S_{s y s}>0\right)$ - the disorder of the system increases
$>$ Negative enthalpy of reaction $\left(\Delta H_{\text {sys }}<0\right)$ - the disorder of the surroundings increases

Example: Is the combustion of glucose spontaneous at $25^{\circ} \mathrm{C}$?
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
\rightarrow Calculate $\Delta \boldsymbol{S}_{\text {sys }}{ }^{o}$ and $\Delta \boldsymbol{H}_{\text {sys }}{ }^{o}$ using Appendix B
$\Delta \boldsymbol{S}_{r}{ }^{o}=\left[6 \times \boldsymbol{S}^{o}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)+6 \times \boldsymbol{S}^{o}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right)\right]-$

$$
\left[1 \times \boldsymbol{S}^{o}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})\right)+6 \times \boldsymbol{S}^{o}\left(\mathrm{O}_{2}(\mathrm{~g})\right)\right]
$$

$\Delta \boldsymbol{S}_{\boldsymbol{r}}{ }^{\boldsymbol{o}}=[6(214)+6(189)]-[1(212)+6(205)]=\mathbf{9 7 6} \mathbf{~ J} / \mathbf{K}$
$\Delta \boldsymbol{H}_{r}{ }^{o}=\left[6 \times \Delta \boldsymbol{H}_{f}{ }^{o}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)+6 \times \Delta \boldsymbol{H}_{f}{ }^{\boldsymbol{o}}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right)\right]-$

$$
\left[1 \times \Delta \boldsymbol{H}_{f}^{o}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})\right)+6 \times \Delta \boldsymbol{H}_{f}^{o}\left(\mathrm{O}_{2}(\mathrm{~g})\right)\right]
$$

$\Delta \boldsymbol{H}_{r}{ }^{\boldsymbol{o}}=[6(-394)+6(-242)]-[1(-1273)]=\mathbf{- 2 5 4 3} \mathbf{~ k J}$
$\Delta S_{\text {sys }}{ }^{0}=0.976 \mathrm{~kJ} / \mathrm{K}$
$\Delta \boldsymbol{S}_{\text {surr }}{ }^{o}=-\Delta \boldsymbol{H}_{\text {sys }}{ }^{o} / \boldsymbol{T}=-(-2543 \mathrm{~kJ}) /(298 \mathrm{~K})=8.53 \mathrm{~kJ} / \mathrm{K}$
$\Delta \boldsymbol{S}_{\text {univ }}{ }^{0}=0.976+8.53=\mathbf{9 . 5 1} \mathbf{~ k J} / \mathrm{K}>\mathbf{0} \rightarrow$ spontaneous

Entropy Changes and the Equilibrium State
$>\Delta \boldsymbol{S}_{\text {univ }}>\mathbf{0} \rightarrow$ the forward reaction is spontaneous
$>\Delta \boldsymbol{S}_{\text {univ }}<\mathbf{0} \rightarrow$ the forward reaction is nonspontaneous (the reverse reaction is spontaneous)
$\rightarrow \Delta \boldsymbol{S}_{\text {univ }}=\mathbf{0} \rightarrow$ the reaction is at equilibrium
\Rightarrow At equilibrium: $\Delta S_{u n i v}{ }^{o}=\Delta S_{s y s}{ }^{o}-\Delta \boldsymbol{H}_{\text {sys }}{ }^{o} / \boldsymbol{T}=0$
\Rightarrow At equilibrium: $\Delta \boldsymbol{S}_{\text {sys }}{ }^{o}=\Delta \boldsymbol{H}_{\text {sys }}{ }^{o} / \boldsymbol{T}$
\rightarrow The equation is useful for calculating the
entropies of phase changes during which the system
is at equilibrium at constant \boldsymbol{T} and \boldsymbol{P}
Example: Calculate $\Delta \boldsymbol{S}_{\text {vap }}{ }^{\boldsymbol{o}}$ of $\mathrm{H}_{2} \mathrm{O}$ at its normal b.p.
$\rightarrow \Delta \boldsymbol{H}_{\text {vap }}{ }^{\boldsymbol{o}}=40.7 \mathrm{~kJ}$ per 1 mol of $\mathrm{H}_{2} \mathrm{O}$
$\rightarrow \Delta \boldsymbol{S}_{\text {vap }}{ }^{\boldsymbol{o}}=\Delta \boldsymbol{H}_{\text {vap }}{ }^{\boldsymbol{o}} / \boldsymbol{T}=40.7 \mathrm{~kJ} / 373 \mathrm{~K}=\mathbf{0 . 1 0 9} \mathbf{~ k J} / \mathbf{K}$
Spontaneous Exo and Endothermic Reactions

$$
\Delta S_{u n i v}{ }^{o}=\Delta S_{\text {sys }}{ }^{o}+\Delta S_{\text {surr }}{ }^{o}>0
$$

For exothermic reactions $\Delta \boldsymbol{S}_{\text {surr }}=-\Delta \boldsymbol{H}_{\text {sys }} / \boldsymbol{T}>0$
$>$ If $\Delta S_{s y s}>0$, the reaction is spontaneous
$>$ If $\Delta \boldsymbol{S}_{\text {sys }}<0$, the reaction is spontaneous only if the increase of $\boldsymbol{S}_{\text {surr }}$ is greater than the decrease of $\boldsymbol{S}_{\text {sys }}$
$>$ For endothermic reactions $\Delta \boldsymbol{S}_{\text {surr }}=-\Delta \boldsymbol{H}_{\text {sys }} / \boldsymbol{T}<0$
$>$ If $\Delta S_{s y s}>0$, the reaction is spontaneous only if the increase of $\boldsymbol{S}_{\text {sys }}$ is greater than the decrease of $\boldsymbol{S}_{\text {surr }}$ $>$ If $\Delta \boldsymbol{S}_{\text {sys }}<0$, the reaction is not spontaneous
Example: $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ heat Exothermic $\Rightarrow \Delta S_{\text {surr }}>0 \quad \mid \Delta S_{\text {surr }}$ dominates \rightarrow Less gaseous products $\Rightarrow \Delta \boldsymbol{S}_{\text {svs }}<0$ spontaneous
\Rightarrow At constant \boldsymbol{T} and \boldsymbol{P}, the entropy change of the universe is related to the free energy change of the system $\rightarrow-\boldsymbol{T} \Delta \boldsymbol{S}_{\text {univ }}=\Delta \boldsymbol{G}_{\text {svs }}$
\rightarrow If $\Delta S_{\text {univ }}>0 \Rightarrow-T \Delta S_{\text {univ }}<0 \Rightarrow \Delta G_{\text {sys }}<0$
$\Rightarrow \Delta \boldsymbol{G}_{\text {sys }}<0 \rightarrow$ a criterion for spontaneity in any system at constant \boldsymbol{T} and \boldsymbol{P}
$>\Delta \boldsymbol{G}_{\text {sys }}<\mathbf{0} \rightarrow$ the forward reaction is spontaneous
$>\Delta \boldsymbol{G}_{\text {sys }}>\mathbf{0} \rightarrow$ the forward reaction is non-spontaneous
(the reverse reaction is spontaneous)
$\Rightarrow \Delta \boldsymbol{G}_{\text {sys }}=\mathbf{0} \rightarrow$ the reaction is at equilibrium
\rightarrow For simplicity, the subscript sys can be omitted from all state functions related to the system, so at const. \boldsymbol{T} and \boldsymbol{P} $\Delta G=\Delta H-T \Delta S$
\Rightarrow If $\Delta \boldsymbol{H}$ and $\Delta \boldsymbol{S}$ have the same sign, $\Delta \boldsymbol{G}^{T}$ can be positive or negative depending on the value of \boldsymbol{T} $>$ At a certain \boldsymbol{T}, the system reaches equilibrium $\Rightarrow \Delta G^{T}=0 \rightarrow \Delta H-T \Delta S=0 \rightarrow \Delta H=T \Delta S$ $\Rightarrow \boldsymbol{T}=\Delta \boldsymbol{H} / \Delta \boldsymbol{S} \leftarrow \boldsymbol{T}$ at which equilibrium is reached
$>$ At any other \boldsymbol{T}, the system is not at equilibrium, and the process either is or isn't spontaneous
$>$ The \boldsymbol{T}-range at which the process is spontaneous, can be found from

$$
\Delta G^{T}<0 \rightarrow \Delta H-T \Delta S<0 \rightarrow \Delta H<T \Delta S
$$

\rightarrow Solving for \boldsymbol{T} gives the desired \boldsymbol{T}-range
Note: Multiplying or dividing with a (-) number changes ($<$) to ($>$)

20.3 Entropy, Free Energy and Work

- Gibbs free energy (\boldsymbol{G}) - a state function defined as: $\boldsymbol{G}=\boldsymbol{H}-\boldsymbol{T S}$
Free Energy Change and Spontaneity
\rightarrow From the $2^{\text {nd }}$ law at constant \boldsymbol{T} and \boldsymbol{P},

$$
\begin{aligned}
& \Delta S_{u n i v}=\Delta S_{s y s}+\Delta S_{s u r r} \Rightarrow \Delta S_{u n i v}=\Delta S_{s y s}-\frac{\Delta H_{s y s}}{T} \\
& \rightarrow \text { Multiply the equation by }(-T) \\
& -T \Delta S_{u n i v}=\Delta H_{s y s}-T \Delta S_{s y s} \\
& \Delta H_{s y s}-T \Delta S_{s y s}=\left(H_{f}-H_{i s y s}-T\left(S_{f}-S_{i}\right)_{s y s}=\right. \\
& =\left(H_{f}-T S_{f}\right)_{s y s}-\left(H_{i}-T S_{i}\right)_{s y s}=\left(G_{f}-G_{i}\right)_{s y s}=\Delta G_{s y s} \\
& \Rightarrow \Delta G_{s y s}=\Delta H_{s y s}-T \Delta S_{s y s}=-T \Delta S_{u n i v}
\end{aligned}
$$

The Effect of Temperature on $\Delta \boldsymbol{G}$

- $\Delta \boldsymbol{G}$ depends strongly on \boldsymbol{T}
- Use the symbol $\Delta \boldsymbol{G}^{T} \rightarrow$ for temperature \boldsymbol{T}
- $\Delta \boldsymbol{H}$ and $\Delta \boldsymbol{S}$ depend very little on \boldsymbol{T}
$-\Delta \boldsymbol{H}$ and $\Delta \boldsymbol{S}$ can be assumed independent of \boldsymbol{T}

$$
\Rightarrow \Delta \boldsymbol{G}^{T}=\Delta \boldsymbol{H}-\boldsymbol{T} \Delta \boldsymbol{S}
$$

$>$ The sign of $\Delta \boldsymbol{G}^{\boldsymbol{T}}$ depends on the signs of $\Delta \boldsymbol{H}$ and $\Delta \boldsymbol{S}$ and the magnitude of \boldsymbol{T}

$\Delta \boldsymbol{H}$	$\Delta \boldsymbol{\Delta}$	$\Delta \boldsymbol{G}^{\boldsymbol{T}}$		Spontaneous?
		High \boldsymbol{T}	Low \boldsymbol{T}	
-	+	-	-	Yes at all $\boldsymbol{T} \mathrm{s}$
-	-	+	-	No at high $\boldsymbol{T} \mathrm{s} ;$ Yes at low $\boldsymbol{T} \mathrm{s}$
+	+	-	+	Yes at high $\boldsymbol{T} \mathrm{s} ;$ No at low $\boldsymbol{T} \mathrm{s}$
+	-	+	+	No at all $\boldsymbol{T} \mathrm{s}$

Example: Is the following reaction spontaneous at high or low temperatures?

$$
3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\text { heat }
$$

Exothermic reaction $\Rightarrow \Delta \boldsymbol{H}<0$
Less gaseous products $\Rightarrow \Delta \boldsymbol{S}<0$
$\Delta G^{T}=\Delta H-T \Delta S=(-)-T(-)=(-)+T(+)<0$ at $\underline{\text { low }} \underline{T}$
Example: For the same reaction at certain
conditions, $\Delta \boldsymbol{H}=-91.8 \mathrm{~kJ}$ and $\Delta \boldsymbol{S}=-197 \mathrm{~J} / \mathrm{K}$. What is the \boldsymbol{T}-range at which the reaction is spontaneous?
$\Delta \boldsymbol{G}^{\boldsymbol{T}}=\Delta \boldsymbol{H}-\boldsymbol{T} \Delta \boldsymbol{S}<\mathbf{0} \rightarrow \Delta \boldsymbol{H}<\boldsymbol{T} \Delta \boldsymbol{S}$
$-91.8 \mathrm{~kJ}<\boldsymbol{T}(-0.197 \mathrm{~kJ} / \mathrm{K}) \quad \leftarrow$ Multiply by (-1)
$91.8 \mathrm{~kJ}>\boldsymbol{T}(0.197 \mathrm{~kJ} / \mathrm{K}) \quad \leftarrow$ Note: $(<)$ flips to $(>)$
$\boldsymbol{T}<91.8 \mathrm{~kJ} / 0.197 \mathrm{~kJ} / \mathrm{K} \Rightarrow \boldsymbol{T}<\mathbf{4 6 6 ~ K} \leftarrow \boldsymbol{T}$-range

Standard Free Energy Changes

- Standard free energy of reaction $\left(\Delta G_{r}{ }^{o, T}\right)$ - the free energy change for a reaction in which all reactants and products are present in their standard states at a specified temperature \boldsymbol{T}
- Standard free energy of formation $\left(\Delta G_{f}^{\boldsymbol{o}, T}\right)$ - the standard free energy for the reaction of formation of 1 mol of a substance from its elements at a specified temperature \boldsymbol{T} (usually 298 K)
$\Delta \boldsymbol{G}_{\boldsymbol{r}}^{\boldsymbol{o}, \boldsymbol{T}}=\sum m \Delta \boldsymbol{G}_{\boldsymbol{f}}^{\boldsymbol{o}, \boldsymbol{T}}$ (products) $-\sum \boldsymbol{n} \Delta \boldsymbol{G}_{\boldsymbol{f}}^{\boldsymbol{o}, \boldsymbol{T}}$ (reactants)
$\rightarrow \Delta \boldsymbol{G}_{\boldsymbol{f}}^{\boldsymbol{0}, 298}$ values are given in Appendix B
\Rightarrow The equation can be used to calculate $\Delta \boldsymbol{G}_{r}{ }^{0,298}$ for a reaction (only for 298 K !)

> b) No data for $\Delta \boldsymbol{G}_{f}{ }^{\boldsymbol{0}, 1500} \Rightarrow$ use $\Delta \boldsymbol{G}^{o, T}=\Delta \boldsymbol{H}^{o}-\boldsymbol{T} \Delta \boldsymbol{S}^{o}$ $\rightarrow \Delta \boldsymbol{H}_{r}{ }^{o}=2 \times \Delta \boldsymbol{H}_{f}{ }^{o}\left(\mathrm{SO}_{3}(\mathrm{~g})\right)-$ $-\left[2 \times \Delta \boldsymbol{H}_{f}{ }^{\boldsymbol{o}}\left(\mathrm{SO}_{2}(\mathrm{~g})\right)+1 \times \Delta \boldsymbol{H}_{f}{ }^{\boldsymbol{o}}\left(\mathrm{O}_{2}(\mathrm{~g})\right)\right]=$ $=2(-396)-[2(-297)+1(0)]=\mathbf{- 1 9 8} \mathbf{k J}$
> $\rightarrow \Delta \boldsymbol{S}_{r}{ }^{o}=2 \times \boldsymbol{S}^{o}\left(\mathrm{SO}_{3}(\mathrm{~g})\right)-\left[2 \times \boldsymbol{S}^{\boldsymbol{o}}\left(\mathrm{SO}_{2}(\mathrm{~g})\right)+1 \times \boldsymbol{S}^{\boldsymbol{o}}\left(\mathrm{O}_{2}(\mathrm{~g})\right)\right]=$
> $=2(257)-[2(248)+1(205)]=\mathbf{- 1 8 7} \mathbf{J} / \mathbf{K}$
> $\rightarrow \Delta \boldsymbol{G}_{r}{ }^{0,1500}=-198 \mathrm{~kJ}-1500 \mathrm{~K} \times(-0.187 \mathrm{~kJ} / \mathrm{K})=$ $=-198 \mathrm{~kJ}+281 \mathrm{~kJ}=+\mathbf{8 3} \mathbf{~ k J}$
> $\Rightarrow \Delta \boldsymbol{G}_{r}{ }^{\text {o,1500 }}>\mathbf{0}$
> \Rightarrow The reaction is not spontaneous at standard conditions and $\mathbf{1 5 0 0} \mathbf{K}$
\rightarrow At any other temperature $(\boldsymbol{T} \neq 298 \mathrm{~K}), \Delta \boldsymbol{G}^{o, \boldsymbol{T}}$ is calculated from the equation

$$
\Delta G^{o, T}=\Delta H^{o}-T \Delta S^{o}
$$

Example: Calculate the standard free energy for the reaction $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ at (a) 298 K and (b) 1500 K
a) $\Delta \boldsymbol{G}_{r}{ }^{0,298}=2 \times \Delta \boldsymbol{G}_{f}{ }^{0,298}\left(\mathrm{SO}_{3}(\mathrm{~g})\right)-$

$$
-\left[2 \times \Delta \boldsymbol{G}_{f}^{o, 298}\left(\mathrm{SO}_{2}(\mathrm{~g})\right)+1 \times \Delta \boldsymbol{G}_{\boldsymbol{f}}^{\boldsymbol{o}, 298}\left(\mathrm{O}_{2}(\mathrm{~g})\right)\right]=
$$

$=2(-371)-[2(-300)+1(0)]=\mathbf{- 1 4 2 ~ k J}$
$\Rightarrow \Delta \boldsymbol{G}_{\boldsymbol{r}}{ }^{0,298}<\mathbf{0}$
\Rightarrow The reaction is spontaneous at standard conditions and 298 K

ΔG and the Work a System Can Do

$\Rightarrow \Delta \boldsymbol{G}$ is equal to the maximum work obtainable from a system in which a spontaneous process takes place $\rightarrow \Delta \boldsymbol{G}=\boldsymbol{w}_{\text {max }}$
$>\Delta \boldsymbol{G}$ is also equal to the minimum work that must be done in order to reverse a spontaneous process
$>$ To obtain the maximum work from a system, the process must be carried out reversibly

- Reversible processes are carried out through infinitely small steps (infinitely slow)
$>$ Can be reversed without leaving permanent changes in the system or its surroundings
> The system is in an "almost equilibrium" state during such processes
$>$ When work is done reversibly, the driving force of the process exceeds the opposing force by an infinitely small amount so the process is extremely slow
$>$ Real processes are not reversible because they are carried out faster in a limited number of steps
$>$ The work obtained from real processes is less than the maximum work (less than $\Delta \boldsymbol{G}$)
$>$ The unharnessed portion of the free energy $(\Delta \boldsymbol{G})$ is lost to the surroundings as heat
\Rightarrow In real processes, one must compromise between the speed and amount of work (free energy) gained from the process

20.4 Free Energy, Equilibrium, and Reaction Direction

$>$ The direction of reaction can be predicted from the sign of $\Delta \boldsymbol{G}$ or by comparing \boldsymbol{Q} and \boldsymbol{K} $>$ If $\boldsymbol{Q}<\boldsymbol{K} \rightarrow \boldsymbol{Q} / \boldsymbol{K}<1 \rightarrow \ln \boldsymbol{Q} / \boldsymbol{K}<\mathbf{0}$ and $\Delta \boldsymbol{G}<\mathbf{0}$, the forward reaction proceeds
$>$ If $Q>K \rightarrow Q / K>1 \rightarrow \ln Q / K>0$ and $\Delta G>0$, the reverse reaction proceeds
\Rightarrow If $\boldsymbol{Q}=\boldsymbol{K} \rightarrow \boldsymbol{Q} / \boldsymbol{K}=1 \rightarrow \ln \boldsymbol{Q} / \boldsymbol{K}=\mathbf{0}$ and $\Delta \boldsymbol{G}=\mathbf{0}$, the reaction is at equilibrium
$\Rightarrow \Delta \boldsymbol{G}$ and $\ln \boldsymbol{Q} / \boldsymbol{K}$ have the same signs and are related:

$$
\Delta G_{r}^{T}=R T \ln \frac{Q}{K}=R T \ln Q-R T \ln K
$$

$\Rightarrow \Delta \boldsymbol{G}_{r}$ is concentration dependent (depends on \boldsymbol{Q}) $\Rightarrow \Delta \boldsymbol{G}_{r}$ can be viewed as a difference between the free energy of the system at the current concentrations of reactants and products, \boldsymbol{Q}, and that at equilibrium, \boldsymbol{K} $>$ At standard-state conditions, all concentrations and pressures are equal to $\mathbf{1}$, so $\boldsymbol{Q}=\mathbf{1}$ and $\Delta \boldsymbol{G}_{r}=\Delta \boldsymbol{G}_{r}{ }^{\boldsymbol{o}}$ $\Rightarrow \Delta G_{r}^{o, T}=R T \ln 1-R T \ln K=0-R T \ln K$

$$
\Delta G_{r}^{o, T}=-R T \ln K
$$

\rightarrow The equation is used to calculate $\Delta \boldsymbol{G}^{o}$ from \boldsymbol{K} and vice versa
$>$ If $K>\mathbf{1} \rightarrow \Delta \boldsymbol{G}^{0}<\mathbf{0} \rightarrow$ products are favored at equilibr.
$>$ If $\boldsymbol{K}<\mathbf{1} \rightarrow \Delta \boldsymbol{G}^{\boldsymbol{o}}>\mathbf{0} \rightarrow$ reactants are favored at equilibr.
\Rightarrow If $\boldsymbol{K}=\mathbf{1} \rightarrow \Delta \boldsymbol{G}^{o}=\mathbf{0}$
$>$ Combining $\Delta G_{r}{ }^{T}=R T \ln Q-R T \ln K$
with $\Delta G_{r}{ }^{o, T}=-R T \ln K$ leads to:

$$
\Delta G_{r}^{T}=\Delta G_{r}^{o, T}+R T \ln Q
$$

\rightarrow The equation is used to calculate $\Delta \boldsymbol{G}_{r}{ }^{T}$ for any nonstandard state from $\Delta \boldsymbol{G}_{r}{ }^{\boldsymbol{0}, \boldsymbol{T}}$ for the respective standard state both at temperature, \boldsymbol{T}, and the reaction quotient of the nonstandard state, \boldsymbol{Q}
$\rightarrow \Delta G_{r}^{o, T}$ is calculated as $\Delta G_{r}{ }^{o, T}=\Delta H_{r}{ }^{o}-T \Delta S_{r}{ }^{o}$
$\rightarrow R=8.314 \times 10^{-3} \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{K}$
$\rightarrow \boldsymbol{T}$ is the same for all quantities in the equation
$\Rightarrow \Delta \boldsymbol{G}_{r}{ }^{T}$ is associated with a certain composition (Q) and a certain temperature (\boldsymbol{T})

Example: Calculate \boldsymbol{K}_{p} at 298 K for the reaction

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

\rightarrow Calculate $\Delta \boldsymbol{G}_{r}{ }^{0,298}$
$\rightarrow \boldsymbol{T}=298 \mathrm{~K} \Rightarrow \Delta \boldsymbol{G}_{f}^{\boldsymbol{p}, 298}$ values from Appendix B can be used
$\Delta \boldsymbol{G}_{r}{ }^{\boldsymbol{0}, 298}=2 \times \Delta \boldsymbol{G}_{\boldsymbol{f}}^{\boldsymbol{0}, 298}\left(\mathrm{NO}_{2}(\mathrm{~g})\right)-$
$-\left[2 \times \Delta \boldsymbol{G}_{f}^{\boldsymbol{o}, 298}(\mathrm{NO}(\mathrm{g}))+1 \times \Delta \boldsymbol{G}_{f}^{\boldsymbol{p}, 298}\left(\mathrm{O}_{2}(\mathrm{~g})\right)\right]=$
$=2(+51.3)-[2(+86.6)+1(0)]=-70.6 \mathbf{k J} / \mathbf{m o l}$
$\Delta G_{r}{ }^{\boldsymbol{o}, T}=-R T \ln K \Rightarrow \ln K=-\Delta G_{r}{ }^{\boldsymbol{o}, T} / R T$
$K=e^{\frac{-\Delta G_{r}^{0, T}}{R T}}=e^{\frac{-(-70.6 \mathrm{k} / \mathrm{mol})}{8.314 \times 10^{-3} \mathrm{kJJmol} \times 298 \mathrm{~K}}}=2.4 \times 10^{12}=K_{p}$
$\boldsymbol{K}_{\boldsymbol{p}} \gg 1 \Rightarrow$ the products are highly favored

Example: Calculate the free energy change for the reaction $\mathbf{H}_{\mathbf{2}}(\mathrm{g})+\mathbf{I}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{2 H I}(\mathrm{g})$ at $\mathbf{5 0 0} \mathrm{K}$ if the partial pressures of $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI are $\mathbf{1 . 5}, \mathbf{0 . 8 8}$ and 0.065 atm , respectively.
\rightarrow Nonstandard state at $500 \mathrm{~K}\left(\Delta \boldsymbol{G}_{r}^{500}=\right.$? $)$
\rightarrow Calculate $\Delta \boldsymbol{G}_{r}{ }^{0,500}$ as $\Delta \boldsymbol{G}_{r}{ }^{o, T}=\Delta \boldsymbol{H}_{r}{ }^{o}-\boldsymbol{T} \Delta \boldsymbol{S}_{r}{ }^{o}$
$\rightarrow \Delta \boldsymbol{H}_{r}{ }^{0}=2 \times \Delta \boldsymbol{H}_{f}{ }^{\boldsymbol{o}}(\mathrm{HI}(\mathrm{g}))-$
$-\left[1 \times \Delta \boldsymbol{H}_{f}{ }^{o}\left(\mathrm{H}_{2}(\mathrm{~g})\right)+1 \times \Delta \boldsymbol{H}_{f}{ }^{o}\left(\mathrm{I}_{2}(\mathrm{~g})\right)\right]=$
$=2(+25.9)-[1(0)+1(+62.4)]=\mathbf{- 1 0 . 6} \mathbf{~ k J}$
$\rightarrow \Delta \boldsymbol{S}_{r}{ }^{o}=2 \times \boldsymbol{S}^{o}(\mathrm{HI}(\mathrm{g}))-\left[1 \times \boldsymbol{S}^{o}\left(\mathrm{H}_{2}(\mathrm{~g})\right)+1 \times \boldsymbol{S}^{o}\left(\mathrm{I}_{2}(\mathrm{~g})\right)\right]=$
$=2(206)-[1(131)+1(261)]=+\mathbf{2 0} \mathbf{~ J} / \mathbf{K}$
$\rightarrow \Delta \boldsymbol{G}_{r}{ }^{\boldsymbol{0}, 500}=\mathbf{- 1 0 . 6 \mathrm { kJ } - 5 0 0 \mathrm { K } \times (0 . 0 2 0 \mathrm { kJ } / \mathrm { K }) = \mathbf { - 2 0 . 6 } \mathbf { k J } , { } ^ { 2 } .}$

$$
\begin{aligned}
& Q_{p}=\frac{P_{H I}^{2}}{P_{H_{2}} P_{I_{2}}}=\frac{(0.065)^{2}}{1.5 \times 0.88}=3.2 \times 10^{-3} \\
& \Delta G_{r}^{500}=\Delta G_{r}^{0,500}+R \times 500 \mathrm{~K} \times \ln Q \\
& =-20.6 \frac{\mathrm{~kJ}}{\mathrm{~mol}}+8.314 \times 10^{-3} \frac{\mathrm{~kJ}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 500 \mathrm{~K} \times \ln \left(3.2 \times 10^{-3}\right) \\
& =-20.6 \frac{\mathrm{~kJ}}{\mathrm{~mol}}-23.9 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \Rightarrow \Delta G_{r}^{500}=-44.5 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \Rightarrow \Delta G_{r}^{500}<\mathbf{0} \\
& \Rightarrow \text { The reaction is spontaneous at this nonstandard } \\
& \text { state and } 500 \mathrm{~K}
\end{aligned}
$$

Deriving the van't Hoff Equation
\rightarrow The van't Hoff equation gives the temperature dependence of the equilibrium constant
$\left.\begin{aligned} & \Delta G_{r}^{o, T}=-R T \ln K \\ & \Delta G_{r}^{o, T}=\Delta H_{r}^{o}-T \Delta S_{r}^{o}\end{aligned} \right\rvert\,-R T \ln K=\Delta H_{r}^{o}-T \Delta S_{r}^{o}$

$$
-\ln K=\frac{\Delta H_{r}^{o}}{R T}-\frac{\Delta S_{r}^{o}}{R}
$$

$>$ If the equation is applied for two different \boldsymbol{T} s, and $\Delta \boldsymbol{H}_{r}{ }^{\boldsymbol{o}}$ and $\Delta \boldsymbol{S}_{r}{ }^{\boldsymbol{o}}$ are assumed independent of \boldsymbol{T}

$$
\rightarrow \ln \frac{K_{2}}{K_{1}}=-\frac{\Delta H_{r}^{o}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

A plot of $-\boldsymbol{\operatorname { l n }} \boldsymbol{K}$ versus $\mathbf{1} / \boldsymbol{T}$ gives a straight line with a Slope $=\Delta \boldsymbol{H}_{r}{ }^{0} / \boldsymbol{R}$ and Intercept $=-\Delta \boldsymbol{S}_{r}{ }^{\circ} / \boldsymbol{R}$
Allows the experimental determination of $\Delta \boldsymbol{H}_{r}{ }^{\boldsymbol{o}}$ and $\Delta \boldsymbol{S}_{r}{ }^{o}$ from measurements of \boldsymbol{K} at different $\boldsymbol{T} \mathrm{s}$

