Using Colligative Properties to Find the Solute Molar Mass

- The molar mass of the solute can be obtained by measuring one of the colligative properties of the solution, the mass of the solute and the mass of the solvent (or the volume of the solution)
$-\Delta \boldsymbol{P}$ and $\Delta \boldsymbol{T}_{\boldsymbol{b}}$ are not very sensitive to changes in the solute concentration (rarely used for molar mass determinations)
$-\Delta \boldsymbol{T}_{f}$ is more sensitive especially when solvents with large \boldsymbol{k}_{f} constants are used
$-\Pi$ is most sensitive and can be used for substances with low molar solubility such as large biomolecules

Example: A 3.0 g polymer sample is dissolved in enough benzene to produce $\mathbf{1 5 0} \mathbf{. m L}$ of solution. If the solution's osmotic pressure is $\mathbf{0 . 0 1 1 9} \mathbf{~ a t m}$ at $25^{\circ} \mathrm{C}$, what is the average $\boldsymbol{M W}$ of the polymer?

Calc. M of the solution:

$$
M=\frac{\Pi}{R T}=\frac{0.0119 \mathrm{~atm}}{0.08206 \mathrm{~L} . \mathrm{atm} / \mathrm{mol} . \mathrm{K} \times 298 \mathrm{~K}}=4.87 \times 10^{-4} \frac{\mathrm{~mol}}{\mathrm{~L}}
$$

\rightarrow Calc. the number of moles of the polymer:
$M=\frac{\mathrm{mol}(\text { pol })}{L(\text { soln })} \rightarrow 4.87 \times 10^{-4} \frac{\mathrm{~mol}}{\mathrm{~L}} \times 0.150 \mathrm{~L}=7.30 \times 10^{-5} \mathrm{~mol}$
\rightarrow Calc. the molar mass of the polymer:

$$
M W=\frac{\operatorname{grams}(\text { polym })}{\operatorname{mol}(\text { polym })} \rightarrow \frac{3.0 \mathrm{~g}}{7.30 \times 10^{-5} \mathrm{~mol}}=41000 \mathrm{~g} / \mathrm{mol}
$$

Example: The $\boldsymbol{T}_{\boldsymbol{f}}$ of camphor is $\mathbf{1 7 9 . 8 0}^{\circ} \mathrm{C}$ and it's $\boldsymbol{k}_{\boldsymbol{f}}$ is $39.7^{\circ} \mathbf{C} / \mathbf{m}$. When $\mathbf{2 0 0 . 0} \mathbf{~ m g}$ of a compound (X) are added to $\mathbf{1 0 0 . 0} \mathbf{g}$ of camphor, it's freezing point drops to $179.2 \mathbf{9}^{\circ} \mathrm{C}$. What is the molar mass of X ?
\rightarrow Calc. the m of X :
$\Delta T_{f}=k_{f} m \rightarrow m=\frac{\Delta T_{f}}{k_{f}}=\frac{(179.80-179.29)^{\circ} \mathrm{C}}{39.7^{\circ} \mathrm{C} / \mathrm{m}}=0.013 \frac{\mathrm{~mol}}{\mathrm{~kg}}$
\rightarrow Calc. the number of moles of X :
$m=\frac{m o l}{}(X) \quad \rightarrow 0.013 \frac{\mathrm{~mol}}{\mathrm{~kg}} \times 0.1000 \mathrm{~kg}=0.0013 \mathrm{~mol}$
\rightarrow Calc. the molar mass of X :
$M W=\frac{\operatorname{grams}(X)}{\operatorname{mol}(X)} \rightarrow \frac{0.2000 \mathrm{~g}}{0.0013 \mathrm{~mol}}=160 \mathrm{~g} / \mathrm{mol}$

Volatile Nonelectrolyte Solutions

- No dissociation; both solvent and solute have vapor pressures (mixtures of volatile organic compounds)
- Raoult's law can be applied to the vapor pressures of both the solute and the solvent
$P_{\text {solv }}=X_{\text {solv }} P_{\text {solv }}^{o} \quad P_{\text {solute }}=X_{\text {solute }} \boldsymbol{P}_{\text {solute }}^{\circ}$
\Rightarrow The presence of each component lowers the vapor pressure of the other component
- The total pressure over the solution is the sum of the partial pressures of the solute and the solvent

$$
P_{\text {tot }}=P_{\text {solv }}+P_{\text {solute }}=X_{\text {solv }} P_{\text {solv }}^{\circ}+X_{\text {solute }} P_{\text {solute }}^{\circ}
$$

- The mole fractions of the solute and solvent in the vapor phase above the solution can be calculated using Dalton's law

$$
\begin{array}{ll}
P_{\text {solv }}=X_{\text {solv }}^{v a p} P_{t o t} & P_{\text {solute }}=X_{\text {solute }}^{v a p} P_{t o t} \\
X_{\text {solv }}^{\text {vap }}=\frac{P_{\text {solv }}}{P_{\text {tot }}} & X_{\text {solute }}^{\text {vap }}=\frac{P_{\text {solute }}}{P_{\text {tot }}}
\end{array}
$$

Example: The equilibrium vapor pressures of pure benzene and toluene are 95.1 and 28.4 torr, respectively at $25^{\circ} \mathrm{C}$. Calculate the total pressure, partial pressures and mole fractions of benzene and toluene over a solution of $\mathbf{1 . 0} \mathbf{~ m o l}$ of benzene in $\mathbf{3 . 0 ~ m o l}$ of toluene at $25^{\circ} \mathrm{C}$.

Electrolyte Solutions

- The solute dissociates to ions
- The number of particles in the solution is greater than the one implied by the solute concentration
- The formulas for the colligative properties must be modified
- van't Hoff factor (i) - accounts for the dissociation of the solute
$-\boldsymbol{i}$ is determined experimentally as a ratio of the measured colligative property versus the one expected for a nonelectrolyte

$$
\begin{array}{ll}
\Delta P=i\left(X_{\text {solute }} P_{\text {solv }}^{o}\right) & \Delta T_{b}=i\left(k_{b} m\right) \\
\Pi=i(M R T) & \Delta T_{f}=i\left(k_{f} m\right) \\
\hline
\end{array}
$$

$$
\begin{aligned}
& X_{b}=\frac{1.0}{1.0+3.0}=0.25 \quad X_{t}=\frac{3.0}{1.0+3.0}=0.75 \\
& P_{b}=X_{b} P_{b}^{o}=0.25 \times 95.1 \text { torr }=24 \text { torr } \\
& P_{t}=X_{t} P_{t}^{o}=0.75 \times 28.4 \text { torr }=21 \text { torr } \\
& P_{\text {tot }}=P_{b}+P_{t}=24+21=45 \text { torr } \\
& X_{b}^{v a p}=\frac{P_{b}}{P_{\text {tot }}}=\frac{24}{45}=0.53 \quad X_{t}^{v a p}=\frac{P_{t}}{P_{\text {tot }}}=\frac{21}{45}=0.47
\end{aligned}
$$

\Rightarrow The mole fractions of the solute and solvent in the vapor phase are different from those in the liquid phase \rightarrow The vapor phase is enriched with the more volatile component \rightarrow Condensation of the vapors leads to a solution which is enriched with the more volatile component \rightarrow distillation

- For ideal solutions (very dilute solutions), the ideal value of \boldsymbol{i} represents the number of moles of particles to which a mole of the solute dissociates
- For real solutions, \boldsymbol{i} is smaller than the ideal value
- The deviation is due to clustering of cations and anions (ionic atmosphere) which reduces the "effective" concentration of particles \rightarrow (i×Conc.)
Example: Select the solution with the higher osmotic pressure: $\mathbf{0 . 1} \mathbf{M ~ N a C l}$ or $\mathbf{0 . 0 8 M} \mathbf{C a C l}_{2}$
\rightarrow Calculate the effective concentrations:
$\rightarrow \mathbf{0 . 1 M ~ N a C l} \rightarrow i \times M=\mathbf{2} \times 0.1=0.2$
$\rightarrow 0.08 \mathrm{M} \mathrm{CaCl}_{2} \rightarrow i \times M=3 \times 0.08=0.24$ (higher)
$\Rightarrow \mathbf{0 . 0 8 M ~ C a C l} 2$ has higher $\Pi(\Pi=\boldsymbol{i} \times M R T)$

