Kinetics: The Rates of Reactions

Chemical kinetics – studies the reaction rates and mechanisms

16.1 Factors Affecting the Reaction Rate

- Chemical nature of the reactants each reaction has its own characteristic rate
- **Concentration** the reaction rate increases with increasing the reactant concentrations (the collision frequency increases)
 - The reactants must collide in order to react

Rate \propto Collision freq. \propto Concentration

- **Physical state** the reaction rate increases with the degree of mixing (contact) between the reactants (depends on the reactant's phase)
- **Temperature** the reaction rate increases with increasing the temperature (increases the collision frequency and the average kinetic energy of the molecules)
 - The reactants must collide with sufficient energy in order to react

Rate \propto Collision energy \propto Temperature

• **Catalyst** – increases (or decreases) the reaction rate by changing the reaction path (mechanism)

16.2 Expressing the Reaction Rate

• Reaction rate – change in the concentration (*C*) of reactants or products per unit time (*t*)

 $\mathbf{Rate} = \Delta C / \Delta t$ $- \mathbf{Units} \rightarrow \mathbf{M/s} \text{ or } \mathbf{mol/L} \cdot \mathbf{s}$

Reactant (A) \rightarrow Product (B) $\Delta C < 0$ $\Delta C > 0$

The rate is positive by convention, but ΔC is (-) for the reactants and (+) for the products

 \Rightarrow Rate = - Δ [A]/ Δt or Rate = Δ [B]/ Δt

Square brackets represent the concentrations of the reactant [A] and product [B] in mol/L

Reaction Rate and Stoichiometry

• ΔC is dependent on the stoichiometric coefficients of the reactants and products For a reaction, $\mathbf{A} \rightarrow 2\mathbf{B}$ > The concentration of **B** changes twice faster than the concentration of **A** $\Delta [\mathbf{B}]/\Delta t = 2(-\Delta [\mathbf{A}]/\Delta t)$ > To make the rate independent of the choice of a reactant or product, we use the convention: For a reaction, $a\mathbf{A} + b\mathbf{B} \rightarrow c\mathbf{C} + d\mathbf{D}$ $Rate = -\frac{1}{a}\frac{\Delta [\mathbf{A}]}{\Delta t} = -\frac{1}{b}\frac{\Delta [\mathbf{B}]}{\Delta t} = \frac{1}{c}\frac{\Delta [\mathbf{C}]}{\Delta t} = \frac{1}{d}\frac{\Delta [\mathbf{D}]}{\Delta t}$

Example:

For the reaction $N_2 + 3H_2 \rightarrow 2NH_3$, the rate of formation of NH₃ is **1.4 M/min**. Calculate the rate of disappearance of H₂ and the reaction rate.

- As the interval of time (t_1, t_2) gets smaller, the slope of *a* approaches the slope of *b* and the average rate approaches the instantaneous rate
 - ⇒The instantaneous rate can be estimated by measuring the average rate in a narrow time interval
- Normally the term reaction rate refers to the instantaneous rate
- Initial rate the instantaneous rate at time, *t*=0 (the starting point of the reaction)
 - For most reactions the rate decreases gradually after the starting point so the slope of the tangents gets smaller with time
 - Initial rates are easier to measure and depend on the initial concentrations which are normally known

16.3 Rate Laws

• **Rate law** – the dependence of the instantaneous rate on the concentrations of the different species in the reaction → **determined experimentally**

Example: $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

- For most reactions of the type $aA + bB + ... \rightarrow Products$ the rate law can be expressed in the form: $Rate = k[A]^m[B]^n ...$ $\rightarrow k - rate constant$ (depends on the nature of A, B, ... and the temperature) $\rightarrow m, n, ... - reaction orders with respect to A, B, ...$ $\rightarrow m + n + ... - overall order of the rate law$ Example: $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ Rate law $\rightarrow Rate = k[N_2O_5]$ $m = 1 \rightarrow first order in N_2O_5$ $m + n + ... = 1 \rightarrow first order overall$