Some Examples of Experimental Rate Laws – General rate law expression: $Rate = k[A]^m[B]^n \dots$ Examples: $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ Rate law $\rightarrow Rate = k[N_2O_5]$ $m = 1 \rightarrow \text{first order in } N_2O_5$ $m + n + \dots = 1 \rightarrow \text{first order overall}$ $2NO_2(g) \rightarrow 2NO(g) + O_2(g)$ Rate law $\rightarrow Rate = k[NO_2]^2$ $m = 2 \rightarrow \text{second order in } NO_2$ $m + n + \dots = 2 \rightarrow \text{second order overall}$

- The reactions orders are not related to the stoichiometric coefficients of the reactants
- The reaction orders can sometimes be fractional or negative numbers
- > The rate law can include concentrations of products

Examples:

 $2O_3 \rightarrow 3O_2$ Rate law $\rightarrow Rate = k[O_3]^2[O_2]^{-1}$ $2SO_2 + O_2 \rightarrow SO_3$ Rate law $\rightarrow Rate = k[SO_2][SO_3]^{-1/2}$ $2NH_3 \rightarrow N_2 + 3H_2$

Rate law $\rightarrow Rate = k \rightarrow zero$ overall order

Examples:

CH₃Br + OH⁻ → CH₃OH + Br⁻ Rate law → *Rate* = k[CH₃Br][OH⁻] m = 1 → first order in CH₃Br n = 1 → first order in OH⁻ m + n + ... = 2 → second order overall (CH₃)₃CBr + H₂O → (CH₃)₃COH + HBr Rate law → *Rate* = k[(CH₃)₃CBr] same as → *Rate* = k[(CH₃)₃CBr]¹[H₂O]⁰ m = 1 → first order in (CH₃)₃CBr n = 0 → zero order in H₂O m + n + ... = 1 → first order overall

The reactions orders can be determined by measuring the changes in the reaction rate upon changing the reactant concentrations

Example:

For the reaction $2NO + 2H_2 \rightarrow N_2 + 2H_2O$, the rate increases by a **factor of nine** when the concentration of **NO** is **tripled** while the concentration of **H**₂ is kept constant. What is the order of the reaction with respect to **NO**?

Rate law $\rightarrow Rate = k[NO]^m[H_2]^n$

 $9 \times Rate = k(3 \times [\text{NO}])^m [\text{H}_2]^n = 3^m \times k[\text{NO}]^m [\text{H}_2]^n$

 $9 \times Rate = 3^m \times Rate$

 \Rightarrow 9 = 3^{*m*} \rightarrow m = 2 \rightarrow 2nd order in NO

Experimental Determination of Rate Laws

- Determination of reaction orders and rate constants
 - The initial rate method the initial rate (*Rate*_o) of the reaction is measured at various initial concentrations ([X]_o) of the reactants
- $aA + bB \rightarrow Products$ $Rate_0 = k[A]_0^m[B]_0^n$
- \rightarrow If **[A]**_o is increased by a factor, *f*, while **[B]**_o is kept constant:

new Rate₀ = $k(\mathbf{f} \times [\mathbf{A}]_0)^m [\mathbf{B}]_0^n = \mathbf{f}^m \times k[\mathbf{A}]_0^m [\mathbf{B}]_0^n$

new $Rate_0 = f^m \times Rate_0$

 \Rightarrow The initial rate increases by a factor of f^m

Exp	Relative Conc.			Relative Rate			
#		O ₂	NO				
1	1.1/1.1=1.0		1.0	3.2/3.2=1.0 ×1.8 ¹			
2	2.0/1.1=1.8		1.0	5.8/3.2=1.8			
Exp	Relative Conc.			Relative Rate			
#	O ₂	NO NO					
1	1.0	1.3/1.3=1.0		3.2/3.2=1.0			
3	1.0	3.0/1.3=2.3		17.0/3.2=5.3			
⇒As $[O_2]_0$ increases by a factor of 1.8, the initial rate increases by a factor of $1.8=1.8^1 \rightarrow 1^{st}$ order in O_2 ⇒As $[NO]_0$ increases by a factor of 2.3, the initial rate increases by a factor of $5.3=2.3^2 \rightarrow 2^{nd}$ order in NO							

Example: Determine the rate law for the reaction $O_2(g) + 2NO(g) \rightarrow 2NO_2(g)$ from the following data:

Exp.	Initial Conc.	×10 ⁻² (mol/L)	Initial Rate ×10 ⁻³
#	O ₂	NO	(mol/L.s)
1	1.1	1.3	3.2
2	2.0	1.3	5.8
3	1.1	3.0	17.0

 \rightarrow Select experiments with the same concentrations of one of the reactants \rightarrow (1, 2) and (1, 3)

→ Calculate the relative concentrations and rates by dividing with the smallest number in a column

Γ	Alternative method:							
l	Exp.#	Initial Conc.	×10 ⁻² (mol/L)	Initial Rate ×10 ⁻³				
l		O ₂	NO	(mol/L.s)				
l	1	1.1	1.3	3.2				
l	2	2.0	1.3	5.8				
l	3	1.1	3.0	17.0				
ŀ	$\rightarrow Rate = k[O_2]^m[NO]^n$							
7 7 7	#1 $3.2 \times 10^{-3} = k(1.1 \times 10^{-2})^m (1.3 \times 10^{-2})^n$ #2 $5.8 \times 10^{-3} = k (2.0 \times 10^{-2})^m (1.3 \times 10^{-2})^n$ #3 $17.0 \times 10^{-3} = k (1.1 \times 10^{-2})^m (3.0 \times 10^{-2})^n$ 5.8 $k \times 2.0^m \times 1.3^n$ 5.8 $(2.0)^m$							
$\begin{vmatrix} \overline{3.2} = \frac{1}{k \times 1.1^m \times 1.3^n} \Rightarrow \overline{3.2} = \left(\frac{1}{1.1}\right) \Rightarrow 1.8 = 1.8 \\ \frac{17.0}{3.2} = \frac{k \times 1.1^m \times 3.0^n}{k \times 1.1^m \times 1.3^n} \Rightarrow \frac{17.0}{3.2} = \left(\frac{3.0}{1.3}\right)^n \Rightarrow 5.3 = 2.3^m \end{vmatrix}$								

 $\Rightarrow Rate = k[O_2][NO]^2$

- \rightarrow The reaction is **3rd-overall order**
- \rightarrow Determine the rate constant by substituting the initial concentrations and initial rate from one of the experiments and solve the equation for *k*

 \rightarrow From Exp. #1:

 $k = \frac{Rate}{[O_2][NO]^2} = \frac{3.2 \times 10^{-3} \text{ mol/L} \cdot \text{s}}{1.1 \times 10^{-2} \text{ mol/L} \times (1.3 \times 10^{-2} \text{ mol/L})^2}$ $k = 1.7 \times 10^3 \text{ L}^2/\text{mol}^2 \cdot \text{s}$

Note that the units of k depend on the overall order of the reaction and are different for different rate laws