Some Examples of Experimental Rate Laws

- General rate law expression:

$$
\text { Rate }=\boldsymbol{k}[\mathbf{A}]^{m}[\mathbf{B}]^{n} \ldots
$$

Examples: $\mathbf{2} \mathrm{N}_{\mathbf{2}} \mathrm{O}_{\mathbf{5}}(\mathrm{g}) \rightarrow \mathbf{4} \mathrm{NO}_{\mathbf{2}}(\mathrm{g})+\mathrm{O}_{\mathbf{2}}(\mathrm{g})$
Rate law \rightarrow Rate $=\boldsymbol{k}\left[\mathbf{N}_{\mathbf{2}} \mathbf{O}_{5}\right]$
$m=1 \rightarrow$ first order in $\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}}$
$m+n+\ldots=1 \rightarrow$ first order overall
$\mathbf{2 N O}_{2}(\mathrm{~g}) \rightarrow \mathbf{2 N O}(\mathrm{g})+\mathbf{O}_{2}(\mathrm{~g})$
Rate law \rightarrow Rate $=\boldsymbol{k}\left[\mathrm{NO}_{2}\right]^{2}$
$m=2 \rightarrow \boldsymbol{s e c o n d}$ order in $\mathbf{N O}_{\mathbf{2}}$
$m+n+\ldots=2 \rightarrow$ second order overall

```
Examples:
\(\mathrm{CH}_{3} \mathrm{Br}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{Br}^{-}\)
    Rate law \(\rightarrow\) Rate \(=\boldsymbol{k}\left[\mathbf{C H}_{3} \mathrm{Br}\right]\left[\mathrm{OH}^{-}\right]\)
    \(m=1 \rightarrow\) first order in \(\mathbf{C H}_{3} \mathbf{B r}\)
    \(n=1 \rightarrow\) first order in \(\mathbf{O H}^{-}\)
    \(m+n+\ldots=2 \rightarrow\) second order overall
\(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{HBr}\)
    Rate law \(\rightarrow\) Rate \(=\boldsymbol{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathbf{C B r}\right]\)
    same as \(\rightarrow\) Rate \(=\boldsymbol{k}\left[\left(\mathbf{C H}_{3}\right)_{3} \mathbf{C B r}\right]^{1}\left[\mathbf{H}_{2} \mathbf{O}\right]^{0}\)
    \(m=1 \rightarrow\) first order in \(\left(\mathbf{C H}_{3}\right)_{3} \mathbf{C B r}\)
    \(n=0 \rightarrow\) zero order in \(\mathrm{H}_{\mathbf{2}} \mathrm{O}\)
    \(m+n+\ldots=1 \rightarrow\) first order overall
```

$>$ The reactions orders can be determined by measuring the changes in the reaction rate upon changing the reactant concentrations

Example:

For the reaction $\mathbf{2 N O}+\mathbf{2 H}_{\mathbf{2}} \rightarrow \mathbf{N}_{\mathbf{2}}+\mathbf{2 H}_{\mathbf{2}} \mathbf{O}$, the rate increases by a factor of nine when the concentration of NO is tripled while the concentration of \mathbf{H}_{2} is kept constant. What is the order of the reaction with respect to NO?
Rate law \rightarrow Rate $=\boldsymbol{k}[\mathbf{N O}]^{m}\left[\mathbf{H}_{2}\right]^{n}$
$9 \times$ Rate $=k(3 \times[\mathbf{N O}])^{m}\left[\mathrm{H}_{2}\right]^{n}=3^{m} \times k[\mathbf{N O}]^{m}\left[\mathrm{H}_{2}\right]^{n}$
$9 \times$ Rate $=3^{m} \times$ Rate
$\Rightarrow 9=3^{m} \rightarrow \mathbf{m}=\mathbf{2} \rightarrow \mathbf{2}^{\text {nd }}$ order in NO

Experimental Determination of Rate Laws

- Determination of reaction orders and rate constants
- The initial rate method - the initial rate (Rate $_{0}$) of the reaction is measured at various initial concentrations ($[\mathbf{X}]_{0}$) of the reactants
$a \mathrm{~A}+\boldsymbol{b B} \rightarrow$ Products \quad Rate $_{0}=\boldsymbol{k}[\mathrm{A}]_{0}{ }^{m}[\mathrm{~B}]_{0}{ }^{\boldsymbol{n}}$
\rightarrow If $[\mathbf{A}]_{0}$ is increased by a factor, f, while $[\mathbf{B}]_{0}$ is kept constant:
new Rate ${ }_{0}=k\left(f \times[\mathrm{A}]_{0}\right)^{m}[\mathrm{~B}]_{0}{ }^{n}=f^{m} \times \boldsymbol{k}[\mathrm{A}]_{0}{ }^{m}[\mathrm{~B}]_{0}{ }^{n}$
new Rate $_{0}=$ f $^{m} \times$ Rate $_{0}$
\Rightarrow The initial rate increases by a factor of f^{m}

$\begin{gathered} \text { Exp } \\ \# \\ \hline \end{gathered}$	Relative Conc.			Relative Rate
		O_{2}	NO	
1	$\frac{1.1 / 1.1=1.0}{2.0 / 1.1=1.8}>\times 1.8$		1.0	$3.2 / 3.2=1.0 \quad \times 1.81$
2			1.0	5.8/3.2=1.8
$\begin{gathered} \operatorname{Exp} \\ \# \end{gathered}$	Relative Conc.			Relative Rate
	O_{2}	NO		
1	1.0	1.3/1.3=1.0 $\longrightarrow 2.3$		3.2/3.2 $=1.0$, ${ }^{\text {a }}$ 2
3	1.0			17.0/3.2 $=5.3$

$\Rightarrow \mathrm{As}\left[\mathrm{O}_{2}\right]_{0}$ increases by a factor of 1.8 , the initial rate increases by a factor of $1.8=1.8^{1} \rightarrow \mathbf{1}^{\text {st }}$ order in $\mathbf{O}_{\mathbf{2}}$
$\Rightarrow \mathrm{As}[\mathrm{NO}]_{\mathrm{o}}$ increases by a factor of 2.3 , the initial rate increases by a factor of $5.3=2.3^{2} \rightarrow \mathbf{2}^{\text {nd }}$ order in NO

Example: Determine the rate law for the reaction $\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ from the following data:

Exp. $\#$	Initial Conc. $\times 10^{-2}(\mathrm{~mol} / \mathrm{L})$		Initial Rate $\times 10^{-3}$

\rightarrow Select experiments with the same concentrations of one of the reactants $\rightarrow(1,2)$ and $(1,3)$
\rightarrow Calculate the relative concentrations and rates by dividing with the smallest number in a column

\Rightarrow Rate $=k\left[\mathrm{O}_{2}\right][\mathrm{NO}]^{2}$
\rightarrow The reaction is $3^{\text {rd }}-o v e r a l l ~ o r d e r ~$
\rightarrow Determine the rate constant by substituting the initial concentrations and initial rate from one of the experiments and solve the equation for \boldsymbol{k}
\rightarrow From Exp. \#1:
$k=\frac{\text { Rate }}{\left[\mathrm{O}_{2}\right][\mathrm{NO}]^{2}}=\frac{3.2 \times 10^{-3} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}}{1.1 \times 10^{-2} \mathrm{~mol} / \mathrm{L} \times\left(1.3 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\right)^{2}}$
$k=1.7 \times 10^{3} \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~s}$
$>$ Note that the units of \boldsymbol{k} depend on the overall order of the reaction and are different for different rate laws

