16.4 Integrated Rate Laws

- Give the concentration of the reactants as a function of time

- Zero order reactions

General reaction: $\mathbf{A} \rightarrow$ Products (Zero-order)
\rightarrow Rate $=\boldsymbol{k} \quad$ and \quad Rate $=-\Delta[\mathbf{A}] / \Delta t$
$-\Delta[\mathbf{A}] / \Delta t=\boldsymbol{k} \rightarrow$ Differential rate law (zero-order)

- Integration of the differential equation leads to:
$[\mathbf{A}]=[\mathbf{A}]_{\mathbf{0}}-\boldsymbol{k t} \rightarrow$ Integrated rate law (zero-order)
- Gives the concentration of the reactant [A] at time t during the reaction
$-[\mathbf{A}]_{0}$ is the initial concentration at time $\boldsymbol{t}=\mathbf{0}$

- Second order reactions

General reaction: $\mathbf{A} \rightarrow$ Products ($2^{\text {nd }}$ order)
\rightarrow Rate $=\boldsymbol{k}[\mathbf{A}]^{2}$ and \quad Rate $=-\Delta[\mathbf{A}] / \Delta t$
$-\Delta[\mathbf{A}] / \Delta t=\boldsymbol{k}[\mathbf{A}]^{2} \rightarrow$ Differential rate law (2 $2^{\text {nd }}$ order) - Integration of the differential equation leads to:
$\mathbf{1} /[\mathbf{A}]=\mathbf{1} /[\mathbf{A}]_{\mathbf{0}}+\boldsymbol{k t} \rightarrow$ Integrated rate law ($2^{\text {nd }}$ order)
Example: For a given zero-order reaction the rate constant is $0.011 \mathrm{M} / \mathbf{s}$ at $25^{\circ} \mathrm{C}$. If the initial concentration of the reactant is $\mathbf{1 . 4 ~ M}$, what is its concentration after $\mathbf{1 . 5}$ minutes?
$[\mathrm{A}]=[\mathrm{A}]_{0}-k t=1.4 \mathrm{M}-0.011 \mathrm{M} / \mathrm{s} \times 90 \mathrm{~s}=0.4 \mathrm{M}$

- First order reactions

General reaction: $\mathbf{A} \rightarrow$ Products ($1^{\text {st }}$ order)
\rightarrow Rate $=\boldsymbol{k}[\mathbf{A}]$ and Rate $=-\Delta[\mathbf{A}] / \Delta t$
$-\Delta[\mathbf{A}] / \Delta t=\boldsymbol{k}[\mathbf{A}] \rightarrow$ Differential rate law (1 ${ }^{\text {st }}$ order)

- Integration of the differential equation leads to:

```
\([\mathbf{A}]=[\mathbf{A}]_{0} \mathbf{e}^{-\boldsymbol{k t}} \rightarrow\) Integrated rate law (1 \({ }^{\text {st }}\) order)
                        \(\rightarrow\) Exponential form
- Take a natural logarithm of both sides:
```

$\ln [A]=\ln [A]_{\mathbf{0}}-\boldsymbol{k t} \rightarrow$ Logarithmic form

- Gives the concentration of the reactant $[\mathbf{A}]$ at time \boldsymbol{t} during the reaction
$-[A]_{0}$ is the initial concentration at time $\boldsymbol{t}=\mathbf{0}$

Example: The decomposition of HI at $25^{\circ} \mathrm{C}$ is a $\mathbf{2}^{\text {nd }}$ order reaction with a rate constant of $\mathbf{2 . 4} \times \mathbf{1 0}^{-\mathbf{2 1}}$ $\mathbf{L} / \mathrm{mol} \cdot \mathbf{s}$. If the initial concentration of HI is $\mathbf{0 . 0 5 0}$ \mathbf{M}, how long would it take for $\mathbf{3 0 \%}$ of it to react?
$\rightarrow 2 \mathrm{HI} \rightarrow \mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow$ Rate $=k[\mathrm{HI}]^{2} \rightarrow 2^{\text {nd }}$ order
$>30 \% \mathrm{HI}$ reacted $\leftrightarrow 70 \% \mathrm{HI}$ remaining
$\Rightarrow[\mathrm{HI}]_{\mathrm{o}}=0.050 \mathrm{M} \quad[\mathrm{HI}]=0.70 \times 0.050=0.035 \mathrm{M}$
$\rightarrow 1 /[\mathrm{HI}]=1 /[\mathrm{HI}]_{0}+k t \rightarrow 1 /[\mathrm{HI}]-1 /[\mathrm{HI}]_{0}=k t$
$\rightarrow t=\left(1 /[\mathrm{HI}]-1 /[\mathrm{HI}]_{0}\right) / k$
$t=\frac{\left(\frac{1}{0.035 \mathrm{~mol} / \mathrm{L}}-\frac{1}{0.050 \mathrm{~mol} / \mathrm{L}}\right)}{2.4 \times 10^{-21} \mathrm{~L} / \mathrm{mol} \cdot \mathrm{s}}=3.6 \times 10^{21} \mathrm{~s}=1.1 \times 10^{14} \mathrm{yr}$

- Graphical representation of integrated rate laws

Example: Determine the reaction order and the rate constant for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ from the following data: $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

Time (min)	[$\mathrm{N}_{2} \mathrm{O}_{5}$]	In [$\left.\mathrm{N}_{2} \mathrm{O}_{5}\right]$	1/[$\left.\mathrm{N}_{2} \mathrm{O}_{5}\right]$
0	0.0165	-4.104	60.6
10	0.0124	-4.390	80.6
20	0.0093	-4.68	1.1×10^{2}
30	0.0071	-4.95	1.4×10^{2}
40	0.0053	-5.24	1.9×10^{2}
50	0.0039	-5.55	2.6×10^{2}
60	0.0029	-5.84	3.4×10^{2}

\rightarrow Using a trail-and-error approach, plot $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$, $\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$, and $1 /\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ versus time until a straight line is obtained

Reaction Half-Life

- Half-life $\left(t_{1 / 2}\right)$ - the time needed to reduce the reactant concentration to $1 / 2$ of its initial value
$>\boldsymbol{t}_{1 / 2}$ for $1^{\text {st }}$ order reactions
$\rightarrow[\mathrm{A}]=[\mathrm{A}]_{0} \mathrm{e}^{-k t} \quad \rightarrow \quad 1 / 2[\mathbf{A}]_{0}=[\mathbf{A}]_{0} \mathrm{e}^{-k t_{1 / 2}}$
$\rightarrow \ln (1 / 2)=-k t_{1 / 2} \quad \rightarrow \quad \ln (2)=k t_{1 / 2}$

$$
t_{1 / 2}=\ln (2) / k=0.693 / k
$$

$\Rightarrow \boldsymbol{t}_{1 / 2}$ is independent of the initial concentration $[\mathbf{A}]_{0}$
\Rightarrow During the course of the reaction, $\boldsymbol{t}_{1 / 2}$ remains the same, so it always takes the same time to half [A]

$$
\begin{aligned}
& >t_{1 / 2} \text { for zero-order reactions } \\
& \rightarrow[\mathrm{A}]=[\mathrm{A}]_{0}-\boldsymbol{k t} \quad \rightarrow \quad 1 / 2[\mathrm{~A}]_{0}=[\mathrm{A}]_{0}-\boldsymbol{k} t_{1 / 2} \\
& \rightarrow k t_{1 / 2}=[A]_{0}-1 / 2[A]_{0} \rightarrow \quad k t_{1 / 2}=1 / 2[A]_{0} \\
& t_{1 / 2}=[A]_{0} / 2 k \\
& \Rightarrow \boldsymbol{t}_{1 / 2} \text { is directly proportional to }[\mathbf{A}]_{\mathbf{o}} \\
& >\boldsymbol{t}_{1 / 2} \text { for } \mathbf{2}^{\text {nd }} \text { order reactions } \\
& \rightarrow 1 /[\mathrm{A}]=1 /[\mathrm{A}]_{0}+k t \rightarrow 1 / 1 / 2[\mathrm{~A}]_{0}=1 /[\mathrm{A}]_{0}+k t_{1 / 2} \\
& \rightarrow 2 /[A]_{0}-1 /[A]_{0}=k t_{1 / 2} \rightarrow \quad 1 /[A]_{0}=k t_{1 / 2} \\
& t_{1 / 2}=1 / k[A]_{0} \\
& \Rightarrow \boldsymbol{t}_{1 / 2} \text { is inversely proportional to }[\mathbf{A}]_{0}
\end{aligned}
$$

$>$ Radioactive decay is a $1^{\text {st }}$ order process
Example: $\boldsymbol{t}_{1 / 2}$ is $\mathbf{5 7 0 0} \mathbf{~ y r}$ for the radioactive isotope of carbon, ${ }^{14} \mathbf{C}$. C-dating shows that the concentration of ${ }^{14} \mathrm{C}$ in an object has decreased to $\mathbf{2 5 \%}$ of its original value. How old is the object?

$$
\begin{aligned}
& \rightarrow t_{1 / 2}=0.693 / k \quad \rightarrow \quad k=0.693 / t_{1 / 2}=0.693 / 5700 \mathrm{yr} \\
& \rightarrow k=1.21 \times 10^{-4} \mathrm{yr}^{-1} \\
& \rightarrow\left[{ }^{14} \mathrm{C}\right]=\left[{ }^{14} \mathrm{C}\right]_{0} \mathrm{e}^{-k t} \quad \rightarrow \quad\left[{ }^{14} \mathrm{C}\right]=0.25\left[{ }^{14} \mathrm{C}\right]_{0} \\
& \rightarrow \mathbf{0 . 2 5}\left[{ }^{14} \mathrm{C}\right]_{0}=\left[{ }^{14} \mathrm{C}\right]_{0} \mathrm{e}^{-k t} \quad \rightarrow \quad 0.25=\mathrm{e}^{-k t} \\
& \rightarrow \ln (0.25)=-k t \quad \rightarrow \quad t=-\ln (0.25) / k \\
& \rightarrow t=-\ln (0.25) / 1.21 \times 10^{-4} \mathrm{yr}^{-1}=11,000 \mathrm{yr}
\end{aligned}
$$

