

• Second order reactions General reaction: $A \rightarrow Products$ (2nd order) $\rightarrow Rate = k[A]^2$ and $Rate = -\Delta[A]/\Delta t$ $-\Delta[A]/\Delta t = k[A]^2 \rightarrow Differential rate law (2nd order))$ - Integration of the differential equation leads to: $1/[A] = 1/[A]_0 + kt \rightarrow Integrated$ rate law (2nd order) Example: For a given zero-order reaction the rate constant is 0.011 M/s at 25°C. If the initial concentration of the reactant is 1.4 M, what is its concentration after 1.5 minutes? $[A] = [A]_0 - kt = 1.4 M - 0.011 M/s \times 90 s = 0.4 M$ • First order reactions General reaction: $\mathbf{A} \rightarrow \mathbf{Products}$ (1st order) $\rightarrow Rate = k[\mathbf{A}]$ and $Rate = -\Delta[\mathbf{A}]/\Delta t$ $-\Delta[\mathbf{A}]/\Delta t = k[\mathbf{A}] \rightarrow \mathbf{Differential}$ rate law (1st order) - Integration of the differential equation leads to: $[\mathbf{A}] = [\mathbf{A}]_{\mathbf{0}} \mathbf{e}^{-kt} \rightarrow \mathbf{Integrated}$ rate law (1st order) $\rightarrow \mathbf{Exponential}$ form - Take a natural logarithm of both sides: $\mathbf{ln}[\mathbf{A}] = \mathbf{ln}[\mathbf{A}]_{\mathbf{0}} - kt \rightarrow \mathbf{Logarithmic}$ form - Gives the concentration of the reactant [A] at time t during the reaction $- [\mathbf{A}]_{\mathbf{0}}$ is the initial concentration at time $t = \mathbf{0}$

Example: The decomposition of HI at 25°C is a 2nd order reaction with a rate constant of 2.4×10⁻²¹ L/mol·s. If the initial concentration of HI is 0.050 M, how long would it take for 30% of it to react? > 2HI \rightarrow H₂+ I₂ \rightarrow Rate = k[HI]² \rightarrow 2nd order > 30% HI reacted \leftrightarrow 70% HI remaining \Rightarrow [HI]₀ = 0.050 M [HI] = 0.70×0.050 = 0.035 M \rightarrow 1/[HI] = 1/[HI]₀ + kt \rightarrow 1/[HI] - 1/[HI]₀ = kt \rightarrow t = (1/[HI] - 1/[HI]₀)/k $t = \frac{\left(\frac{1}{0.035 \text{ mot}/\text{L}} - \frac{1}{0.050 \text{ mot}/\text{L}}\right)}{2.4 \times 10^{-21} \text{ L/mol s}} = 3.6 \times 10^{21} \text{ s} = 1.1 \times 10^{14} \text{ yr}$

Example: Determine the reaction order and the rate constant for the decomposition of N_2O_5 from the following data: $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

Time (min)	[N2O5]	In [N ₂ O ₅]	1/[N2O5]	
0	0.0165	-4.104	60.6	← Calculate
10	0.0124	-4.390	80.6	$ln[N_2O_5]$ and $1/[N_2O_5]$
20	0.0093	-4.68	1.1×10 ²	
30	0.0071	-4.95	1.4×10 ²	
40	0.0053	-5.24	1.9×10 ²	
50	0.0039	-5.55	2.6×10 ²	
60	0.0029	-5.84	3.4×10^{2}	

Reaction Half-Life

• Half-life $(t_{\frac{1}{2}})$ – the time needed to reduce the reactant concentration to $\frac{1}{2}$ of its initial value

> $t_{1/2}$ for 1st order reactions

$$\rightarrow [\mathbf{A}] = [\mathbf{A}]_0 e^{-kt} \rightarrow \frac{1}{2} [\mathbf{A}]_0 = [\mathbf{A}]_0 e^{-kt_{1/2}}$$

$$\rightarrow \ln(\frac{1}{2}) = -kt_{1/2} \rightarrow \ln(2) = kt_{1/2}$$

$$t_{1/2} = \ln(2)/k = 0.693/k$$

 $\Rightarrow t_{\frac{1}{2}}$ is independent of the initial concentration [A]₀

 \Rightarrow During the course of the reaction, $t_{\frac{1}{2}}$ remains the same, so it always takes the same time to half [A]

➢ Radioactive decay is a 1st order process
Example:
$$t_{1/2}$$
 is 5700 yr for the radioactive isotope of carbon, ¹⁴C. C-dating shows that the concentration of ¹⁴C in an object has decreased to 25% of its original value. How old is the object?
→ $t_{1/2} = 0.693/k$ → $k = 0.693/t_{1/2} = 0.693/5700$ yr
→ $k = 1.21 \times 10^{-4}$ yr⁻¹
→ $[^{14}C] = [^{14}C]_0 e^{-kt}$ → $[^{14}C] = 0.25[^{14}C]_0$
→ $0.25[^{14}C]_0 = [^{14}C]_0 e^{-kt}$ → $0.25 = e^{-kt}$
→ $ln(0.25) = -kt$ → $t = -ln(0.25) / k$
→ $t = -ln(0.25) / 1.21 \times 10^{-4}$ yr⁻¹ = 11,000 yr