16.5 Theories of Chemical Kinetics The Effect of Temperature

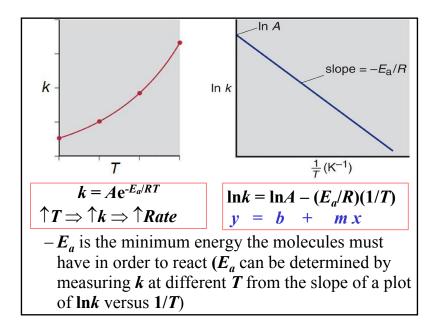
- For most reactions, the reaction rate increases almost exponentially with T (rate ~ doubles for every 10°C of T^{\uparrow})
- -T affects the rate through the rate constant, k
- Arrhenius equation gives the temperature dependence of *k*

$$k = A e^{-E_a/RT}$$

 $\rightarrow A$ – preexponential factor; E_a – activation energy

 \rightarrow Take a natural logarithm (ln) of both sides

 $\ln k = \ln A - E_a / RT$



> For two different temperatures, T_1 and T_2 $\rightarrow \ln k_2 = \ln A - E_a/RT_2$ $\rightarrow \ln k_1 = \ln A - E_a/RT_1$ $\Rightarrow \ln \frac{k_2}{k_1} = -\frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$

- \rightarrow Allows the determination of E_a by measuring k at two different Ts
- \rightarrow Allows the calculation of *k* at a given *T*, if *k* is known at another *T* (*E_a* must be known too)

Example: For a given 1st order reaction, *k* is 2.6×10⁻¹⁰ s⁻¹ at 300°C and 6.7×10⁻⁴ s⁻¹ at 500°C. Calculate the activation energy. $T_1 = 300°C = 573 \text{ K}$ $k_1 = 2.6 \times 10^{-10} \text{ s}^{-1}$ $T_2 = 500°C = 773 \text{ K}$ $k_2 = 6.7 \times 10^{-4} \text{ s}^{-1}$ $E_a = -R \left(\ln \frac{k_2}{k_1} \right) \left(\frac{1}{T_2} - \frac{1}{T_1} \right)^{-1}$ $E_a = -8.314 \frac{\text{J}}{\text{mol} \cdot \text{K}} \left(\ln \frac{6.7 \times 10^{-4} \text{ s}^{-1}}{2.6 \times 10^{-10} \text{ s}^{-1}} \right) \left(\frac{1}{773 \text{ K}} - \frac{1}{573 \text{ K}} \right)^{-1}$ $E_a = 2.72 \times 10^5 \text{ J/mol} = 272 \text{ kJ/mol}$

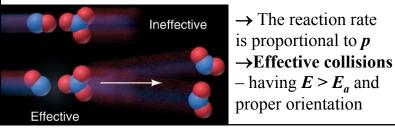
Explaining the Effects of Concentration and Temperature

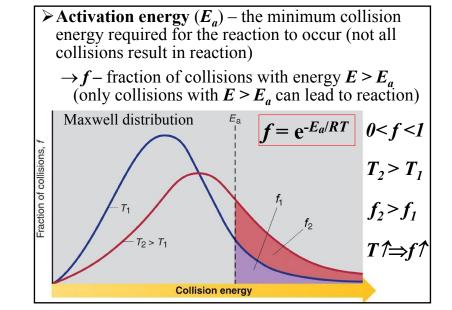
- The Arrhenius equation is empirical and it does not explain the T dependence of k
- Collision theory molecules must collide in order to react
- Collision frequency (Z) number of collisions per unit time per unit volume (the reaction rate is proportional to Z)
 - $\rightarrow Z$ is proportional to the concentration of the reactants
 - \rightarrow For a 2nd order reaction (A + B \rightarrow Products)

 $Z = Z_o[A][B]$

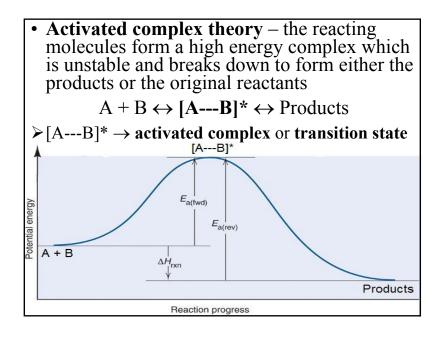
 Z_o – proportionality constant (depends on \sqrt{T})

- → The reaction rate is proportional to f $\Rightarrow \uparrow T \Rightarrow \uparrow f \Rightarrow \uparrow Rate$ $\Rightarrow \uparrow E_a \Rightarrow \downarrow f \Rightarrow \downarrow Rate$ $f = e^{-E_a/RT}$ Steric factor (p) – the colliding molecules must have proper orientation with respect to each other
 - have proper orientation with respect to each other in order to react
 - $\rightarrow p$ fraction of the total # of collisions having proper orientations (0 < p < 1)





➤ The reaction rate is proportional to the collision frequency (Z), the fraction of collisions (f) with $E > E_a$, and the fraction of collisions (p) with proper orientations
→ For a 2nd order reaction (A + B → Products)
Rate = p×f×Z = p×e^{-E_a/RT}×Z_o[A][B] (From theory)
Rate = k[A][B] (From exper.)
⇒ k = p×Z_o×e^{-E_a/RT} (p×Z_o = A)
⇒ k = p×Z_o×e^{-E_a/RT} (p×Z_o = A)
→ The equation is the same as the Arrhenius equation
→ A contains the steric factor, p, and part of the collision frequency, Z_o (Z_o depends weakly on √T)



- $-E_a$ is the height of the barrier between the reactants and the transition state
- $-E_a$ is needed to weaken the bonds in the reactants so that the new bonds in the products can be formed
- Every reaction (every step in a reaction) goes through its own transition state
- Theoretically all reactions are reversible since once reached the transition state can go forward to products or back to reactants
- Reaction energy diagrams show the energy profile of the reaction $(E_{a(fwd)}, E_{a(rev)}, \text{ and } \Delta H_{rxn})$

