16.6 Reaction Mechanisms

- Sequences of molecular level steps (called elementary reactions) that sum up to the overall reaction
- Elementary reactions (steps) describe individual molecular events (collisions)

Example: $2O_3(g) \rightarrow 3O_2(g)$

 \rightarrow Proposed 2 step mechanism:

1.
$$O_3 \rightarrow O_2 + O$$

2. $O_3 + O \rightarrow 2O_2$ $\left| \oplus \Rightarrow 2O_3 \rightarrow 3O_2 \text{ (overall)} \right|$

➢ Reaction intermediate – formed in one step and used up in another (does not appear in the overall reaction) → O is an intermediate

- →Reaction intermediates are usually unstable species, but some are stable enough to be isolated
- **Molecularity** the number of reactant species involved in an elementary reaction (the number of colliding species)

Example: $2O_3(g) \rightarrow 3O_2(g)$

- $O_3 \rightarrow O_2 + O$ (1 reactant molecule \rightarrow Unimolecular)
- $O_3 + O \rightarrow 2O_2$ (2 reactant species \rightarrow **Bimolecular**)
 - → **Termolecular** reactions are very rare very low probability for a three-particle collision with enough energy and proper orientation
 - \rightarrow Higher order molecularities are not known

• Rate laws for elementary reactions – can be derived from the reaction stoichiometry				
 The reaction orders are equal to the stoichiometric coefficients of the reactants 				
i	$A + jB \rightarrow Products$			
	$Rate = k[A]^{i}[B]^{j}$			
\rightarrow Applies only to elementary reactions!				
\Rightarrow Overall reaction order (i + j) = Molecularity				
Table 16.6 Rate Laws for General Elementary Steps				
Elementary Step	Molecularity	Rate Law		
$A \longrightarrow product$	Unimolecular	Rate = $k[A]$		
$2A \longrightarrow product$	Bimolecular	Rate = $k[A]^2$		
$A + B \longrightarrow product$	Bimolecular	Rate = $k[A][B]$		
$2A + B \longrightarrow product$	Termolecular	Rate = $k[A]^2[B]$		

Example: For the following three-step mechanism, determine the rate law and molecularity of each step, identify the intermediate and write the overall balanced equation.

- 1. $2\{ N_2O_5 \rightarrow NO_2 + NO_3 \}$
- 2. $NO_2 + NO_3 \rightarrow NO_2 + O_2 + NO$
- 3. $NO + NO_3 \rightarrow 2NO_2$
- $\rightarrow 2\{...\}$ the 1st equation is taken twice
- 1. $Rate_1 = k_1[N_2O_5] \rightarrow unimolecular$
- 2. $Rate_2 = k_2[NO_2][NO_3] \rightarrow bimolecular$
- 3. $Rate_3 = k_3[NO][NO_3] \rightarrow bimolecular$

• **Rate-determining step** (*RDS*) – the slowest step in a mechanism (limits the rate of the overall reaction)

Rate = *Rate of RDS*

Correlating Mechanisms and Rate Laws

- The validity of a mechanism can be tested by correlating it with the experimental rate law
 - The elementary steps must add up to the overall reaction
 - The elementary steps must be physically reasonable (uni- or bi-molecular)
 - The rate law of the *RDS* must agree with the experimental rate law

Mechanisms with a **slow initial step** \geq Example: $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$ Experimental rate law: $Rate = k[NO_2]^2$ \rightarrow Three proposed mechanisms: A single step mechanism: I. $NO_2 + CO \rightarrow NO + CO_2$ Rate = $k[NO_2][CO]$ \rightarrow Inconsistent with the exp. rate law \Rightarrow reject [Slow, RDS] II. 1. NO₂ + NO₂ \rightarrow NO₃ + NO 2. $NO_3 + CO \rightarrow NO_2 + CO_2$ [Fast] $\oplus \rightarrow NO_2 + CO \rightarrow NO + CO_2$ (overall) $Rate = Rate_1 = k_1 [NO_2] [NO_2] = k_1 [NO_2]^2$ \rightarrow Consistent with the exp. rate law ($k = k_1$)

III	1. $NO_2 + NO_2 \rightarrow N_2O_4$ [Slow, <i>RDS</i>]				
	2. $N_2O_4 + CO \rightarrow NO + NO_2 + CO_2$ [Fast]				
(+)	$\rightarrow \overline{\mathbf{NO}_2 + \mathbf{CO} \rightarrow \mathbf{NO} + \mathbf{CO}_2} $ (overall)				
$Rate = Rate_1 = k_1[NO_2][NO_2] = k_1[NO_2]^2$					
	\rightarrow Consistent with the exp. rate law ($k = k_1$)				
\Rightarrow	Both (II) and (III) are physically reasonable (involve bimolecular steps) and consistent with the experimental rate law \rightarrow more data are needed to give preference to one of them				
	Mechanisms <i>can never be proved</i> by kinetics data alone; we can only <i>reject</i> a mechanism or state that a mechanism is <i>consistent</i> with the kinetics data				

\triangleright	Mechanisms with a fast initial step		
	$A \xrightarrow{k_1} Int$	[Slow]	[Fast]
	Int $\stackrel{k_2}{\rightarrow}$ B	[Fast]	[Slow]
\oplus –	$A \to B$	$Rate = k_1[A]$	$Rate = k_2[Int]$
\rightarrow	[Int] can not]	be in the rate law	(intermediate) ar

- \rightarrow [Int] can not be in the rate law (intermediate) and must be expressed through the concentrations of the reactants (or products) in the overall reaction
- \rightarrow If the first reaction is **fast and reversible**, it quickly reaches equilibrium and the rate of formation of the intermediate is equal to the rate of its consumption (steady state approximation)
- → The steady state approximation allows the calculation of [Int]

1. NO + Br ₂ $\underset{k_{-1}}{\overset{k_1}{\leftrightarrow}}$ NOBr ₂ [Fast, revers.]				
2. $\operatorname{NOBr}_2 + \operatorname{NO} \xrightarrow{k_2} 2\operatorname{NOBr} [Slow, RDS]$				
$\Rightarrow Rate = Rate_2 = k_2[NO][NOBr_2]$				
$\rightarrow Rate_1 = Rate_{.1} \rightarrow k_1[NO][Br_2] = k_1[NOBr_2]$				
$\rightarrow [\text{NOBr}_2] = (k_1/k_1)[\text{NO}][\text{Br}_2]$				
$\Rightarrow Rate = k_2[NO][NOBr_2] = k_2[NO](k_1/k_1)[NO][Br_2]$				
$\Rightarrow Rate = (k_2 k_1 / k_1) [NO]^2 [Br_2] = k [NO]^2 [Br_2]$				
\rightarrow Experimental rate law: <i>Rate</i> = $k[NO]^2[Br_2]$				
→ Consistent with the exp. rate law $(k = k_2 k_1 / k_{-1})$				

• Homogeneous catalysis – the catalyst is in the same phase as the reactants

Example: Decomposition of H₂O₂

 $2\mathrm{H_2O_2(aq)} \xrightarrow{\mathrm{Br_2(aq)}} 2\mathrm{H_2O(l)} + \mathrm{O_2(g)}$

- $\rightarrow Br_2(aq)$ is in the same phase as $H_2O_2(aq)$
- \rightarrow **Br**₂ catalyses the reaction by providing a two step mechanism with lower E_a
- 1. $H_2O_2(aq) + Br_2(aq) \rightarrow 2Br^- + 2H^+ + O_2(g)$
- 2. $H_2O_2(aq) + 2Br^- + 2H^+ \rightarrow Br_2(aq) + 2H_2O(l)$
- \rightarrow **Br**₂ is not consumed in the reaction

