Equilibrium: The Extent of Reactions

- Chemical equilibrium - studies the extent of reactions and the ways it can be altered
- Kinetics and equilibrium are two different aspects of chemical reactions (fast reactions may proceed to a great, lesser or a limited extent; same is true for slow reactions)

16.1 The Dynamic Nature of the Equilibrium State

- Chemical equilibrium - a state in which the concentrations of reactants and products no longer change

$>$ Equilibrium is not a stationary state or a unidirectional process
Example: $(\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C})$
If the rates of step 1 and step 2 are equal, [B]
remains constant \rightarrow not an equilibrium state
$>$ Equilibrium is a dynamic state achieved by the equalization of the forward and reverse rates of a reversible (bidirectional) process
Example: $(\mathrm{A} \leftrightarrow \mathrm{B})$
If the rates of the forward and reverse reactions are equal, $[\mathrm{A}]$ and $[\mathrm{B}]$ remain constant \rightarrow an equilibrium state
\Rightarrow At equilibrium \rightarrow Rate $_{\text {fivd }}=$ Rate $_{\text {rev }}$

Example: $\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{4}}\left(\mathrm{g}\right.$; colorless) $\leftrightarrow \mathbf{2 N O}_{\mathbf{2}}(\mathbf{g} ;$ brown $)$

\Rightarrow The reaction can be started from pure $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}$; colorless) or from pure $\mathrm{NO}_{2}(\mathrm{~g}$; brown).
$>$ In both cases at equilibrium, the same light-brown color is reached (the same proportion of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} is produced)
$>$ The reaction has a single step mechanism (the forward and reverse reactions are elementary), so at equilibrium:

$$
\begin{gathered}
\text { Rate }_{1}=\text { Rate }_{-1} \rightarrow \begin{array}{l}
\boldsymbol{k}_{1}\left[\mathbf{N}_{\mathbf{2}} \mathbf{O}_{4}\right]=\boldsymbol{k}_{-1}\left[\mathbf{N O}_{\mathbf{2}}\right]^{\mathbf{2}} \\
\boldsymbol{k}_{-1} \\
\rightarrow \boldsymbol{K}=\frac{\left[\mathbf{N O}_{2}\right]^{2}}{\left[\mathbf{N}_{2} \mathbf{O}_{4}\right]}
\end{array} \begin{array}{l}
\rightarrow \boldsymbol{K} \text { is a constant which depends } \\
\text { on } \boldsymbol{T}\left(\boldsymbol{K}=0.211 \text { at } 100^{\circ} \mathrm{C}\right) \\
\rightarrow \boldsymbol{K} \text { determines the proportion of } \\
\mathrm{N}_{2} \mathrm{O}_{4} \text { and } \mathrm{NO}_{2} \text { at equilibrium }
\end{array} \\
\hline
\end{gathered}
$$

17.2 The Equilibrium Constant and the Reaction Quotient

The Law of Mass-Action

- Equilibrium constant (K)
- For a general reaction at equilibrium:
$\boldsymbol{a} \mathbf{A}+\boldsymbol{b B} \leftrightarrow \boldsymbol{c} \mathbf{C}+\boldsymbol{d} \mathbf{D}$

$$
\boldsymbol{K}_{\boldsymbol{c}}=\frac{[\mathbf{C}]_{\mathrm{e}}^{c}[\mathbf{D}]_{\mathrm{e}}^{d}}{[\mathbf{A}]_{\mathrm{e}}^{a}[\mathbf{B}]_{\mathrm{e}}^{b}}
$$

$\rightarrow \boldsymbol{K}_{\boldsymbol{c}}$ is the equilibrium constant in terms of concentration (depends on \boldsymbol{T} and the specific reaction) $\rightarrow[\mathrm{A}]_{\mathrm{e}},[\mathrm{B}]_{\mathrm{e}},[\mathrm{C}]_{\mathrm{e}}$, and $[\mathrm{D}]_{\mathrm{e}}$ are the equilibrium concentrations of the reactants and products $\rightarrow \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$, and \boldsymbol{d} are the stoichiometric coefficients of the reactants and products

Example: Write the mass action expression for the reaction: $\mathbf{2 H}_{\mathbf{2}}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g}) \leftrightarrow \mathbf{2 H}_{\mathbf{2}} \mathbf{O}(\mathrm{g})$ $\boldsymbol{Q}_{c}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \quad$ At equilibrium $\rightarrow \boldsymbol{Q}_{c}=K_{c}$

- The mass-action expressions for \boldsymbol{Q} and \boldsymbol{K} depend on the form of the chemical equation

$$
\begin{array}{l|c}
\hline \mathbf{A} \leftrightarrow \mathbf{B} \tag{or}\\
\boldsymbol{Q}_{c}^{\rightarrow}=\frac{[\mathbf{B}]}{[\mathbf{A}]}
\end{array} \quad \begin{array}{cc}
\mathbf{B} \leftrightarrow \mathbf{A} \\
&
\end{array}
$$

$\Rightarrow Q($ or $K)$ of the reverse reaction is the reciprocal of $Q($ or $K)$ of the forward reaction

- Reaction quotient (Q) - has the same massaction expression as \boldsymbol{K}
-For a general reaction at any given time:

$$
a \mathrm{~A}+b \mathrm{~B} \leftrightarrow c \mathrm{C}+d \mathrm{D}
$$

$$
\boldsymbol{Q}_{c}=\frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}}
$$

$\rightarrow \boldsymbol{Q}_{c}$ is the reaction quotient in terms of concentration $\left(\boldsymbol{Q}_{c}\right.$ varies during the reaction)
$\rightarrow[\mathrm{A}],[\mathrm{B}],[\mathrm{C}]$, and $[\mathrm{D}]$ are the current concentrations of the reactants and products at any given time during the reaction
\rightarrow When the current concentrations become equal to the equilibrium concentrations, $\boldsymbol{Q}_{c}=\boldsymbol{K}_{c}$

$$
\Rightarrow \text { At equilibrium } \rightarrow Q=K
$$

$\mathbf{A} \leftrightarrow \mathbf{B}$	or	$\boldsymbol{n} \mathbf{A} \leftrightarrow \boldsymbol{n} \mathbf{B}$
$\boldsymbol{Q}_{c}=\frac{[\mathbf{B}]}{[\mathbf{A}]}$		$\boldsymbol{Q}_{c}^{\prime}=\frac{[\mathbf{B}]^{n}}{[\mathbf{A}]^{n}}=\left(\boldsymbol{Q}_{c}\right)^{n}$

\Rightarrow Multiplying a reaction by a factor, n, raises Q (or K) to $\boldsymbol{n}^{\text {th }}$ power

$$
\begin{array}{lll}
\text { 1. } \mathbf{A}+\mathbf{B} \leftrightarrow \mathbf{C} & Q_{1}=[\mathrm{C}] /[\mathrm{A}][\mathrm{B}] \\
\text { 2. } \mathbf{C} \leftrightarrow \mathbf{D} & \boldsymbol{Q}_{2}=[\mathrm{D}] /[\mathrm{C}] \\
\cline { 1 - 1 }+\mathbf{B} \leftrightarrow \mathbf{D} & \boldsymbol{Q}_{c}=[\mathrm{D}] /[\mathrm{A}][\mathrm{B}] \\
\boldsymbol{Q}_{1} \times \boldsymbol{Q}_{2} & =\frac{[\mathrm{C}]}{[\mathrm{A}][\mathrm{B}]} \times \frac{[\mathrm{D}]}{[\mathrm{C}]}=\frac{[\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}=\boldsymbol{Q}_{c}
\end{array}
$$

$\Rightarrow Q($ or $K)$ of the sum of two or more reactions is the product of their Qs (or Ks)

Example: For the gas phase reaction

$$
1 / 2 \mathbf{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrow \mathbf{H C l}(\mathrm{g})
$$

$\boldsymbol{K}_{\boldsymbol{c}}$ is 3.6×10^{-5} at 1200 K . What is $\boldsymbol{K}_{\boldsymbol{c}}{ }^{\prime}$ for the reaction

$$
2 \mathrm{HCl}_{(\mathrm{g})} \leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) ?
$$

\rightarrow The given reaction has been reversed \Rightarrow take the reciprocal of \boldsymbol{K}_{c}
\rightarrow The given reaction has been multiplied by $2 \Rightarrow$ take the square of $\boldsymbol{K}_{\boldsymbol{c}}$

$$
\Rightarrow K_{c}{ }^{\prime}=\left(1 / K_{c}\right)^{2}=\left(1 / 3.6 \times 10^{-5}\right)^{2}=7.7 \times 10^{8}
$$

Example: Given the following two reactions and their $\boldsymbol{K}_{c} \mathrm{~s}$ at a certain temperature:

$$
\begin{array}{ll}
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) & K_{c l}=2.2 \times 10^{6} \\
2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & K_{c 2}=1.6 \times 10^{-10}
\end{array}
$$

Calculate $\boldsymbol{K}_{\boldsymbol{c}}$ at this temperature for the reaction

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

\rightarrow The sum of the given reactions yields the desired reaction \Rightarrow multiply the $\boldsymbol{K}_{\boldsymbol{c}}$
$\Rightarrow K_{c}=K_{c 1} \times K_{c 2}=\left(2.2 \times 10^{6}\right) \times\left(1.6 \times 10^{-10}\right)$
$\Rightarrow K_{c}=3.5 \times 10^{-4}$

