Equilibrium: The Extent of Reactions

- Chemical equilibrium studies the extent of reactions and the ways it can be altered
- Kinetics and equilibrium are two *different* aspects of chemical reactions (fast reactions may proceed to a great, lesser or a limited extent; same is true for slow reactions)

16.1 The Dynamic Nature of the Equilibrium State

• Chemical equilibrium – a state in which the concentrations of reactants and products no longer change

 At a given *T*, the same equilibrium state is reached even if the process is started from different starting points Equilibrium is not a stationary state or a unidirectional process

Example: $(A \rightarrow B \rightarrow C)$

If the rates of step 1 and step 2 are equal, [B] remains constant \rightarrow not an equilibrium state

Equilibrium is a dynamic state achieved by the equalization of the forward and reverse rates of a reversible (bidirectional) process

Example: $(A \leftrightarrow B)$

If the rates of the forward and reverse reactions are equal, [A] and [B] remain constant \rightarrow an equilibrium state

 \Rightarrow At equilibrium \rightarrow $Rate_{fwd} = Rate_{rev}$

Example: $N_2O_4(g; \text{ colorless}) \leftrightarrow 2NO_2(g; \text{ brown})$ > The reaction can be started from pure $N_2O_4(g;$

- colorless) or from pure $NO_2(g; brown)$.
- ➤ In both cases at equilibrium, the same light-brown color is reached (the same proportion of N₂O₄ and NO₂ is produced)
- The reaction has a single step mechanism (the forward and reverse reactions are elementary), so at equilibrium:

$$Rate_{1} = Rate_{-1} \quad \rightarrow \quad k_{1}[N_{2}O_{4}] = k_{-1}[NO_{2}]^{2}$$

 $\Rightarrow \frac{k_1}{k_{-1}} = K = \frac{[NO_2]^2}{[N_2O_4]} \Rightarrow K \text{ is a constant which depends}$ on $T (K = 0.211 \text{ at } 100^{\circ}\text{C})$ $\Rightarrow K \text{ determines the proportion of}$ N₂O₄ and NO₂ at equilibrium

17.2 The Equilibrium Constant and the Reaction Quotient

The Law of Mass-Action

- Equilibrium constant (K)
 - For a general reaction at equilibrium: $a\mathbf{A} + b\mathbf{B} \leftrightarrow c\mathbf{C} + d\mathbf{D}$

→ K_c is the equilibrium constant in terms of concentration (depends on *T* and the specific reaction) → $[A]_e$, $[B]_e$, $[C]_e$, and $[D]_e$ are the equilibrium concentrations of the reactants and products → *a*, *b*, *c*, and *d* are the stoichiometric coefficients of the reactants and products

- Reaction quotient (Q) has the same massaction expression as K
 - For a general reaction at any given time:

- $\rightarrow Q_c$ is the reaction quotient in terms of concentration (Q_c varies during the reaction)
- → [A], [B], [C], and [D] are the **current concentrations** of the reactants and products at any given time during the reaction
- \rightarrow When the current concentrations become equal to the equilibrium concentrations, $Q_c = K_c$

 \Rightarrow At equilibrium $\rightarrow Q = K$

Example: Write the mass action expression for the reaction: $2H_2(g) + O_2(g) \leftrightarrow 2H_2O(g)$

$$Q_c = \frac{[\mathrm{H}_2\mathrm{O}]^2}{[\mathrm{H}_2]^2[\mathrm{O}_2]}$$
 At equilibrium $\rightarrow Q_c = K_c$

• The mass-action expressions for *Q* and *K* depend on the form of the chemical equation

$$A \leftrightarrow B$$
 or
$$B \leftrightarrow A$$
$$Q_c^{\rightarrow} = \frac{[B]}{[A]}$$

$$Q_c^{\leftarrow} = \frac{[A]}{[B]} = \frac{1}{Q_c^{\rightarrow}}$$
$$Q \text{ (or } K \text{) of the reverse reaction is the }$$
reciprocal of Q (or K) of the forward reaction

$$A \leftrightarrow B$$

 $Q_c = \frac{[B]}{[A]}$ or $nA \leftrightarrow nB$
 $Q'_c = \frac{[B]^n}{[A]^n} = (Q_c)^n$ \Rightarrow Multiplying a reaction by a factor, n , raises Q
(or K) to n^{th} power $1. A + B \leftrightarrow C$
 $Q_1 = [C]/[A][B]$ $2. C \leftrightarrow D$
 $A + B \leftrightarrow D$ $Q_c = [D]/[C]$
 $A + B \leftrightarrow D$ $Q_c = [D]/[A][B]$ $Q_1 \times Q_2 = \frac{\{C\}}{[A][B]} \times \frac{[D]}{[C]} = \frac{[D]}{[A][B]} = Q_c$ $\Rightarrow Q$ (or K) of the sum of two or more reactions
is the product of their Q s (or K s)

Example: For the gas phase reaction

 $\frac{1}{2}H_2(g) + \frac{1}{2}Cl_2(g) \leftrightarrow HCl(g)$

 K_c is 3.6×10⁻⁵ at 1200 K. What is K_c' for the reaction

 $\mathbf{2HCl}(\mathbf{g}) \leftrightarrow \mathbf{H}_{\mathbf{2}}(\mathbf{g}) + \mathbf{Cl}_{\mathbf{2}}(\mathbf{g}) \ ?$

- \rightarrow The given reaction has been reversed \Rightarrow take the reciprocal of K_c
- → The given reaction has been multiplied by $2 \Rightarrow$ take the square of K_c

 $\Rightarrow K_c' = (1/K_c)^2 = (1/3.6 \times 10^{-5})^2 = 7.7 \times 10^8$

Example: Given the following two reactions and their K_c s at a certain temperature:

 $N_2O_4(g) \leftrightarrow 2NO_2(g)$ $K_{c1} = 2.2 \times 10^6$

 $2NO_2(g) \leftrightarrow 2NO(g) + O_2(g)$ $K_{c2} = 1.6 \times 10^{-10}$

Calculate K_c at this temperature for the reaction

 $N_2O_4(g) \leftrightarrow 2NO(g) + O_2(g)$

 \rightarrow The sum of the given reactions yields the desired reaction \Rightarrow multiply the K_c

 $\Rightarrow K_c = K_{c1} \times K_{c2} = (2.2 \times 10^6) \times (1.6 \times 10^{-10})$

 $\Rightarrow K_c = 3.5 \times 10^{-4}$