Connection between Kinetics and Equilibrium
$>$ For an elementary reaction:

$$
a \mathbf{A}+b \mathbf{B} \leftrightarrow c \mathbf{C}+d \mathbf{D}
$$

Rate $_{\text {fivd }}=\boldsymbol{k}_{\text {fwd }}[\mathbf{A}]^{a}[\mathbf{B}]^{b}$ and Rate Rev $=\boldsymbol{k}_{\text {rev }}[\mathbf{C}]^{c}[\mathbf{D}]^{d}$
>At equilibrium:
Rate $_{\text {fwd }}=$ Rate $_{\text {rev }} \rightarrow \boldsymbol{k}_{\text {fwd }}[\mathbf{A}]^{a}[\mathbf{B}]^{b}=\boldsymbol{k}_{\text {rev }}[\mathbf{C}]^{c}[\mathbf{D}]^{d}$
$\Rightarrow \frac{\boldsymbol{k}_{\text {fvd }}}{\boldsymbol{k}_{\text {rev }}}=\frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}}=\boldsymbol{Q}_{c}=\boldsymbol{K}_{c} \quad \Rightarrow \quad \boldsymbol{K}_{c}=\frac{\boldsymbol{k}_{\text {fve }}}{\boldsymbol{k}_{\text {rev }}}$
$\rightarrow \boldsymbol{K}_{c}$ is large when the forward reaction is fast and the reverse is slow $\left(\boldsymbol{k}_{\text {fwd }} \gg \boldsymbol{k}_{\text {rev }}\right)$
$>$ For an overall reaction (sum of elementary reactions), \boldsymbol{K}_{c} is the product of the \boldsymbol{K}_{c} for the individual elementary steps:

$$
\boldsymbol{K}_{c}=\boldsymbol{K}_{c}^{\prime} \times \boldsymbol{K}_{c}^{\prime \prime} \times \ldots=\frac{\boldsymbol{k}_{f w d}^{\prime}}{\boldsymbol{k}_{r e v}^{\prime}} \times \frac{\boldsymbol{k}_{f w d}^{\prime \prime}}{\boldsymbol{k}_{r e v}^{\prime \prime}} \times \ldots
$$

\rightarrow The magnitude of \boldsymbol{K}_{c} is an indication of how far a reaction proceeds toward products at a given \boldsymbol{T}
\rightarrow Large $\boldsymbol{K}_{c}\left(\boldsymbol{K}_{c} \gg 1\right)$ - products dominate
\rightarrow Small $\boldsymbol{K}_{\boldsymbol{c}}\left(\boldsymbol{K}_{c} \ll 1\right)$ - reactants dominate
\rightarrow Intermediate $\boldsymbol{K}_{\boldsymbol{c}}\left(\boldsymbol{K}_{\boldsymbol{c}} \sim 1\right)$ - significant amounts of both reactants and products are present at equilibrium

$$
\begin{gathered}
Q_{c}^{\prime} \times\left[\mathrm{H}_{2} \mathbf{O}(\mathrm{l})\right]^{2}=\left[\mathrm{H}_{2}(\mathrm{~g})\right]^{2}\left[\mathrm{O}_{2}(\mathrm{~g})\right]=\boldsymbol{Q}_{c}^{\prime} \times(55.6)^{2}=\boldsymbol{Q}_{c} \\
\Rightarrow \boldsymbol{Q}_{c}=\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]
\end{gathered}
$$

\Rightarrow The molarities of pure liquids and solids remain constant during the reaction and can be eliminated from the expressions for \boldsymbol{Q} and \boldsymbol{K}
Example: $\mathbf{A g C l}(\mathrm{s}) \leftrightarrow \mathbf{A g}^{+}(\mathbf{a q})+\mathbf{C l}^{-}(\mathrm{aq})$
$\rightarrow \mathbf{A g C l}(\mathrm{s})$ is a pure solid

$$
\Rightarrow \boldsymbol{Q}_{c}=\left[\mathbf{A g}^{+}\right]\left[\mathrm{Cl}^{-}\right]
$$

Example: $\mathbf{S}(\mathrm{s})+\mathbf{O}_{\mathbf{2}}(\mathrm{g}) \leftrightarrow \mathbf{S O}_{\mathbf{2}}(\mathrm{g})$
$\rightarrow \mathbf{S}(\mathrm{s})$ is a pure solid

$$
\Rightarrow \boldsymbol{Q}_{c}=\left[\mathbf{S O}_{2}\right] /\left[\mathbf{O}_{2}\right]
$$

17.3 Equilibria Involving Gases

- Gases are quantified easier through partial pressures rather than molarities
$>$ For a gaseous reactant or product, the molarity, $\boldsymbol{C}_{\boldsymbol{i}}$, and partial pressure, $\boldsymbol{P}_{\boldsymbol{i}}$, are related by the ideal gas law

$$
P_{i} V=n_{i} R T \quad P_{i} / R T=n_{i} / V=C_{i}
$$

$$
\begin{aligned}
& \text { For a general reaction } \\
& \qquad \boldsymbol{a} \mathbf{A}(\mathbf{g})+\boldsymbol{b} \mathbf{B}(\mathbf{g}) \leftrightarrow \boldsymbol{c} \mathbf{C}(\mathbf{g})
\end{aligned} \boldsymbol{Q}_{c}=\frac{[\mathbf{C}]^{c}}{[\mathbf{A}]^{a}[\mathbf{B}]^{b}}
$$

$$
\begin{array}{ll}
Q_{c}=\frac{P_{C}{ }^{c}}{P_{A}{ }^{a} P_{B}^{b}} \times \frac{1}{(R T)^{\Delta n}} & \Delta n=c-(a+b) \\
Q_{c}=Q_{p} \times \frac{1}{(R T)^{\Delta n}} & Q_{p}=\frac{P_{C}{ }^{c}}{P_{A}{ }^{a} P_{B}^{b}} \\
Q_{p}=Q_{c}(R T)^{\Delta n} & K_{p}=K_{c}(R T)^{\Delta n}
\end{array}
$$

$\rightarrow \boldsymbol{Q}_{p}$ and \boldsymbol{K}_{p} are the reaction quotient and equilibrium constant in terms of partial pressures (\boldsymbol{P} is in atm, $\boldsymbol{R}=0.08206 \mathrm{~L} . \mathrm{atm} / \mathrm{mol} . \mathrm{K}, \boldsymbol{T}$ is in K)

$$
Q_{c}=\frac{\left(P_{C} / R T\right)^{c}}{\left(P_{A} / R T\right)^{a}\left(P_{B} / R T\right)^{b}}=\frac{P_{C}{ }^{c}}{P_{A}{ }^{a} P_{B}{ }^{b}} \times \frac{1}{(R T)^{c-(a+b)}}
$$

$\rightarrow \Delta n$ is the difference between the moles of gaseous products and reactants

$$
\Delta \boldsymbol{n}=\boldsymbol{n}(\mathrm{g}, \text { products })-\boldsymbol{n} \text { (g, reactants) }
$$

Example: For the reaction

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$\boldsymbol{K}_{\boldsymbol{c}}=2.6 \times 10^{-6}$ at 1000 K . What is the partial pressure of CO_{2} in the reaction mixture at this temperature?
\rightarrow Calculate \boldsymbol{K}_{p}
$\rightarrow \Delta n=1-0=1$
$\rightarrow \boldsymbol{K}_{p}=\boldsymbol{K}_{c}(\boldsymbol{R T})^{\Delta n}=2.6 \times 10^{-6}(0.0821 \times 1000)=2.1 \times 10^{-4}$
$\rightarrow K_{p}=$ Pco $_{2} \quad \Rightarrow \quad$ Pco $_{2}=\mathbf{2 . 1} \times \mathbf{1 0}^{-4} \mathbf{a t m}$
$>$ Use $\boldsymbol{K}_{c}\left(\right.$ or $\left.\boldsymbol{Q}_{c}\right)$ if molarities are given, $\boldsymbol{K}_{p}\left(\right.$ or $\left.\boldsymbol{Q}_{p}\right)$ if partial pressures are given, or $\boldsymbol{K}($ or $\boldsymbol{Q})$ for mixed expressions
$>$ Omit the subscript " e " from all expressions for \boldsymbol{K}

Example:

$$
\begin{gathered}
\mathbf{H}_{2} \mathbf{S}(\mathbf{g})+\mathbf{H}_{2} \mathbf{O}(\mathbf{l}) \leftrightarrow \mathbf{H}_{3} \mathbf{O}^{+}(\mathbf{a q})+\mathbf{H S}^{-}(\mathrm{aq}) \\
K=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HS}^{-}\right] / \boldsymbol{P}_{\mathrm{H}_{2} S}
\end{gathered}
$$

Example: Calculate \boldsymbol{K}_{c} and $\boldsymbol{K}_{\boldsymbol{p}}$ for the reaction

$$
2 \mathrm{BrCl}_{(\mathrm{g})} \leftrightarrow \mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

if at 500 K , the equilibrium concentrations of BrCl , Br_{2} and Cl_{2} are $0.131,3.51$ and 0.156 M , respectively.

$$
K_{c}=\frac{\left[\mathrm{Br}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{BrCl}^{2}\right.}=\frac{3.51 \times 0.156}{0.131^{2}}=31.9
$$

$\rightarrow \Delta n=\mathbf{1 + 1} \mathbf{- 2}=\mathbf{0} \Rightarrow \boldsymbol{K}_{p}=\boldsymbol{K}_{c}(\boldsymbol{R T})^{0}=31.9 \times 1=31.9$

17.4 The Direction of Reaction

- The direction of a reaction can be predicted by comparing the current value of \boldsymbol{Q} to the value of \boldsymbol{K} at the temperature of the reaction
- As the reaction approaches equilibrium, \boldsymbol{Q} approaches \boldsymbol{K}
- If $\boldsymbol{Q}<\boldsymbol{K}$, the concentration of reactants is too high, while that of products is too low
\Rightarrow the reaction proceeds forward
- If $\boldsymbol{Q}>\boldsymbol{K}$, the concentration of reactants is too low, while that of products is too high \Rightarrow the reaction proceeds in reverse
- If $\boldsymbol{Q}=\boldsymbol{K}$, the reaction is at equilibrium

Example: For the reaction

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

$\boldsymbol{K}_{\boldsymbol{p}}=0.98$ at 298 K . Predict the direction of the reaction at 298 K , if the partial pressures of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} are 2.4 and 1.2 atm , respectively.

$$
Q_{p}=\frac{P_{\mathrm{NO}_{2}}{ }^{2}}{P_{\mathrm{N}_{2} \mathrm{O}_{4}}}=\frac{1.2^{2}}{2.4}=0.60 \quad K_{p}=0.98
$$

$\rightarrow \boldsymbol{Q}_{\boldsymbol{p}}<\boldsymbol{K}_{\boldsymbol{p}} \Rightarrow$ The reaction proceeds
forward to produce more NO_{2}

