17.5 Solving Equilibrium Problems

- Calculation of $\boldsymbol{K}_{\boldsymbol{c}}$ (or \boldsymbol{K}_{p}) values from measured equilibrium concentrations (or pressures)
- Calculation of equilibrium concentrations (or pressures) from $\boldsymbol{K}_{\boldsymbol{c}}$ (or \boldsymbol{K}_{p}) values
- Equilibrium tables ("ice" tables) - give the initial, \boldsymbol{i}, change of, \boldsymbol{c}, and equilibrium, \boldsymbol{e}, concentrations of reactants and products
-For a general reaction: $\mathbf{A}+\mathbf{2 B} \leftrightarrow \mathbf{C}$
$\rightarrow[A]_{i},[B]_{i},[C]_{i}-$ initial concentrations
$\rightarrow[A]_{e},[B]_{e},[C]_{e}-$ equilibrium concentrations
$\rightarrow \Delta[\mathbf{A}], \Delta[\mathbf{B}], \Delta[\mathbf{C}],-$ change in the concentrations
$\rightarrow[A]_{e}=[A]_{i}+\Delta[\mathbf{A}] \rightarrow$ same is valid for B and C

Using Equilibrium Quantities to Calculate \boldsymbol{K}

- If all equilibrium concentrations are given, substitute in the mass action expression to find \boldsymbol{K}
- If the initial concentrations and one equilibrium concentration are given, use an ice table to find \boldsymbol{K}
Example: $1.00 \mathbf{~ m o l}$ of NH_{3} is sealed in a $\mathbf{1 . 0 0} \mathbf{~ L}$ container and heated to 500 K . Calculate $\boldsymbol{K}_{\boldsymbol{c}}$ for $2 \mathrm{NH}_{3}(\mathrm{~g}) \leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$, if at equilibrium the concentration of NH_{3} is $\mathbf{0 . 5 8} \mathbf{~ M}$.
$\rightarrow\left[\mathrm{NH}_{3}\right]_{\mathrm{i}}=1.00 \mathrm{~mol} / 1.00 \mathrm{~L}=1.00 \mathrm{M}$
$\rightarrow\left[\mathrm{N}_{2}\right]_{\mathrm{i}}=\left[\mathrm{H}_{2}\right]_{\mathrm{i}}=0$
$\rightarrow\left[\mathrm{NH}_{3}\right]_{\mathrm{e}}=0.58 \mathrm{M}$

$$
\begin{aligned}
& \rightarrow \Delta[C]=+x \\
& \rightarrow \Delta[\mathrm{~A}]=-\Delta[\mathrm{C}] \times(1 \mathrm{~mol} \mathrm{~A} / 1 \mathrm{~mol} \mathrm{C})=-\Delta[\mathrm{C}]=-x \\
& \rightarrow \Delta[B]=-\Delta[C] \times(2 \mathrm{~mol} \mathrm{~B} / 1 \mathrm{~mol} \mathrm{C})=-2 \Delta[\mathrm{C}]=-2 x \\
& \Rightarrow K_{c}=\frac{[C]}{[A][B]^{2}}=\frac{\left([C]_{\mathrm{i}}+\boldsymbol{x}\right)}{\left([\mathrm{A}]_{\mathrm{i}}-\boldsymbol{x}\right)\left([\mathrm{B}]_{\mathrm{i}}-2 \boldsymbol{x}\right)^{2}} \\
& \rightarrow \text { The equation can be used to calculate } \boldsymbol{K}_{\boldsymbol{c}} \text { if } \boldsymbol{x} \text { is } \\
& \text { known or to calculate } \boldsymbol{x} \text { if } \boldsymbol{K}_{c} \text { is known }
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow\left[\mathrm{NH}_{3}\right]_{\mathrm{e}}=1.00-2 \boldsymbol{x}=0.58 \\
& \Rightarrow \boldsymbol{x}=(1.00-0.58) / 2=0.21 \\
& \rightarrow\left[\mathrm{~N}_{2}\right]_{\mathrm{e}}=\boldsymbol{x}=0.21 \mathrm{M} \\
& \rightarrow\left[\mathrm{H}_{2}\right]_{\mathrm{e}}=3 \boldsymbol{x}=0.63 \mathrm{M} \\
& \Rightarrow \quad K_{c}=\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}{\left[\mathrm{NH}_{3}\right]^{2}}=\frac{[0.21][0.63]^{3}}{[0.58]^{2}}=0.16
\end{aligned}
$$

Using K to Calculate Equilibrium Quantities

- If \boldsymbol{K} and all but one equilibrium concentrations are given, substitute in the mass action expression for \boldsymbol{K} to find the unknown concentration
- If the initial concentrations and \boldsymbol{K} are given, use an ice table to find the equilibrium concentrations
Example: 0.50 mol of HI is sealed in a $\mathbf{2 . 0} \mathbf{L}$ reactor and heated to $700^{\circ} \mathrm{C}$. Calculate the equilibrium concentrations of all species if at $700^{\circ} \mathrm{C}$, $\boldsymbol{K}_{\boldsymbol{c}}=\mathbf{0 . 0 2 2}$ for $2 \mathrm{HI}(\mathrm{g}) \leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$.
$\rightarrow[\mathrm{HI}]_{\mathrm{i}}=0.50 \mathrm{~mol} / 2.0 \mathrm{~L}=0.25 \mathrm{M}$
$\rightarrow\left[\mathrm{I}_{2}\right]_{\mathrm{i}}=\left[\mathrm{H}_{2}\right]_{\mathrm{i}}=0$

$>$ Using the quadratic formula

Example: $0.50 \mathbf{m o l ~ H I}$ and $\mathbf{0 . 3 0} \mathbf{~ m o l ~} \mathrm{H}_{2}$ are sealed in a 2.0 L reactor and heated to $700^{\circ} \mathrm{C}$. Calculate the equilibrium concentrations of all species if at $700^{\circ} \mathrm{C}, \boldsymbol{K}_{\boldsymbol{c}}=\mathbf{0 . 0 2 2}$ for $2 \mathrm{HI}(\mathrm{g}) \leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$.
$\rightarrow[\mathrm{HI}]_{\mathrm{i}}=0.50 \mathrm{~mol} / 2.0 \mathrm{~L}=0.25 \mathrm{M}$
$\rightarrow\left[\mathrm{H}_{2}\right]_{\mathrm{i}}=0.30 \mathrm{~mol} / 2.0 \mathrm{~L}=0.15 \mathrm{M}$
$\rightarrow\left[\mathrm{I}_{2}\right]_{\mathrm{i}}=0$

	[]	$2 \mathrm{HI}(\mathrm{g}) \leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$			$K_{c}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}$
\cdots	i	0.25	0.15	0	
0	c	-2x	+x	$+x$	
${ }^{\circ}$	e	0.25-2x	$0.15+x$	x	$=0.022$

$\begin{aligned} & 2 \\ & + \\ & 0 \\ & i 1 \\ & 0 \end{aligned}$	[]	$2 \mathrm{HI}(\mathrm{g}) \leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$			$\begin{aligned} K_{c} & =\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}} \\ & =0.022 \end{aligned}$
	i	0.25	0	0	
	c	-2x	+ x	+ \times	
	e	0.25-2x	x	x	
	$\overline{(0.25-2 x)^{2}}=0.022 \Rightarrow$		=	$\sqrt{(0.25-2 x)^{2}}=\sqrt{0.022}$	$x)^{2}=\sqrt{0.022}$
$\frac{x}{0.25-2 x}=\sqrt{0.022} \Rightarrow x=\sqrt{0.022} \times 0.25-\sqrt{0.022} \times 2 x$					
$x+0.297 x=0.0371 \quad \Rightarrow \quad x=\frac{0.0371}{1+0.297}=0.029$					
$\begin{aligned} & \Rightarrow\left[\mathrm{H}_{2}\right]_{\mathrm{e}}=\left[\mathrm{I}_{2}\right]_{\mathrm{e}}=\boldsymbol{x}=\mathbf{0 . 0 2 9} \mathbf{~ M} \\ & \Rightarrow[\mathrm{HI}]_{\mathrm{e}}=0.25-2 \boldsymbol{x}=0.25-2 \times 0.029=\mathbf{0 . 1 9} \mathbf{~ M} \end{aligned}$					

$$
\begin{aligned}
& \frac{(0.15+x) x}{(0.25-2 x)^{2}}=0.022 \Rightarrow \frac{0.15 x+x^{2}}{0.25^{2}-2 \times 0.25 \times 2 x+4 x^{2}}=0.022 \\
& 0.15 x+x^{2}=0.022 \times 0.25^{2}-0.022 \times 4 \times 0.25 x+0.022 \times 4 x^{2} \\
& 0.15 x+x^{2}=0.00138-0.022 x+0.088 x^{2} \\
& 0.912 x^{2}+0.172 x-0.00138=0 \\
& x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \rightarrow \text { The }(-) \text { solution is meaningless } \\
& x=\frac{-0.172+\sqrt{0.172^{2}-4 \times 0.912 \times(-0.00138)}}{2 \times 0.912}=0.00768 \\
& \Rightarrow\left[I_{2}\right]_{\mathrm{e}}=\boldsymbol{x}=\mathbf{0 . 0 0 7 7} \mathbf{~ M} \\
& \Rightarrow\left[\mathrm{H}_{2}\right]_{\mathrm{e}}=0.15+\boldsymbol{x}=0.15+0.00768=\mathbf{0 . 1 6} \mathbf{~ M} \\
& \Rightarrow[\mathrm{HI}]_{\mathrm{e}}=0.25-2 \boldsymbol{x}=0.25-2 \times 0.00768=\mathbf{0 . 2 3} \mathbf{~ M}
\end{aligned}
$$

$>$ Using simplifying assumptions

Example: A mixture of $\mathbf{0 . 0 6 0} \mathrm{M} \mathrm{N}_{2}$ and $\mathbf{0 . 0 4 0} \mathrm{M}$ H_{2} is heated to a temperature where $\boldsymbol{K}_{c}=\mathbf{0 . 0 0 1 0}$ for $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$. Calculate the equilibrium concentration of NH_{3}.
$\rightarrow\left[\mathrm{N}_{2}\right]_{\mathrm{i}}=0.060 \mathrm{M}$
$\rightarrow\left[\mathrm{H}_{2}\right]_{\mathrm{i}}=0.040 \mathrm{M}$
$\rightarrow\left[\mathrm{NH}_{3}\right]_{\mathrm{i}}=0$

	[]	$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$			$\left[\mathrm{NH}_{3}\right]^{2}$
$\stackrel{+}{+}$	i	0.060	0.040	0	
0	c	-x	$-3 x$	$+2 x$	
\bigcirc	e	0.060-x	0.040-3x	$2 x$	

$>$ Simplifying assumptions are not always justified
Example: A mixture of $\mathbf{0 . 0 6 0} \mathrm{M} \mathrm{N}_{2}$ and $\mathbf{0 . 0 4 0} \mathrm{M}$ H_{2} is heated to a temperature where $\boldsymbol{K}_{\boldsymbol{c}}=\mathbf{1 0}$. for $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$. Calculate the equilibrium concentration of NH_{3}.
\rightarrow Using the assumption from the previous problem leads to:

$$
\begin{aligned}
& \frac{4 x^{2}}{(0.060)(0.040)^{3}}= 10 . \quad \Rightarrow \quad x=\sqrt{\frac{10 . \times 0.060 \times 0.040^{3}}{4}} \\
& x=0.0031
\end{aligned}
$$

\rightarrow The assumption is not justified since \boldsymbol{x} and $3 \boldsymbol{x}$ are more than 5% of 0.060 and 0.040

$$
(3 \times 0.0031 / 0.040) \times 100 \%=23 \% \text { error }
$$

\Rightarrow We must solve the equation without assumptions

$>$ Successive approximation

\rightarrow Using the same formula as in the previous problem without neglecting x and $3 x$ leads to:

$$
x_{n+1}=\sqrt{\frac{10 . \times\left(0.060-x_{n}\right)\left(0.040-3 x_{n}\right)^{3}}{4}}
$$

\rightarrow This formula allows the calculation of the $(\mathbf{n}+\mathbf{1})^{\text {st }}$ approximation for \boldsymbol{x} from the $\mathbf{n}^{\text {th }}$ approximation \rightarrow For $\mathbf{n}=\mathbf{0}$, assume $\boldsymbol{x}_{\boldsymbol{0}}=\mathbf{0}(\boldsymbol{x}$ is expected to be small)
\rightarrow For $\mathbf{n}=\mathbf{1}$ ($1^{\text {st }}$ iteration)

$$
x_{1}=\sqrt{\frac{10 \times(0.060-0)(0.040-3 \times 0)^{3}}{4}}=0.0031
$$

$$
\begin{aligned}
& \rightarrow \text { For } \mathbf{n}=\mathbf{2}\left(2^{\text {nd }} \text { iteration }\right) \\
\boldsymbol{x}_{2} & =\sqrt{\frac{\mathbf{1 0 .} \times(\mathbf{0 . 0 6 0}-\mathbf{0 . 0 0 3 1})\left(\mathbf{0 . 0 4 0 - 3 \times 0 . 0 0 3 1) ^ { 3 }}\right.}{4}}=\mathbf{0 . 0 0 2 0} \\
& \rightarrow \text { For } \mathbf{n}=\mathbf{3}\left(3^{\text {rd }} \text { iteration }\right) \\
\boldsymbol{x}_{3} & =\sqrt{\frac{\mathbf{1 0 .} \times(\mathbf{0 . 0 6 0} \mathbf{- 0 . 0 0 2 0})(\mathbf{0 . 0 4 0 - 3 \times 0 . 0 0 2 0})^{3}}{4}}=\mathbf{0 . 0 0 2 4} \\
& \rightarrow \text { For } \mathbf{n}=\mathbf{4}\left(4^{\text {th }} \text { iteration }\right) \\
\boldsymbol{x}_{4} & =\sqrt{\frac{\mathbf{1 0 .} \times\left(\mathbf{0 . 0 6 0} \mathbf{- 0 . 0 0 2 4) (0 . 0 4 0 - \mathbf { 3 } \times \mathbf { 0 . 0 0 2 4 }) ^ { 3 }}\right.}{4}}=\mathbf{0 . 0 0 2 3} \\
& \rightarrow \text { For } \mathbf{n}=\mathbf{5}\left(5^{\text {th }} \text { iteration }\right) \rightarrow \boldsymbol{x}_{5}=\mathbf{0 . 0 0 2 3} \\
& \rightarrow \text { Since } \boldsymbol{x}_{5} \approx \boldsymbol{x}_{4}(\text { convergence }) \Rightarrow \boldsymbol{x}=\mathbf{0 . 0 0 2 3} \\
\Rightarrow & {\left[\mathrm{NH}_{3}\right]_{\mathrm{e}}=2 \boldsymbol{x}=2 \times(0.0023)=\mathbf{0 . 0 0 4 6} \mathrm{M} }
\end{aligned}
$$

Equilibrium Calculations for Reactions with Unknown Direction

Example: $\mathbf{0 . 5 0} \mathbf{~ m o l ~} \mathrm{H}_{2}, \mathbf{0 . 5 0} \mathbf{~ m o l ~} \mathrm{I}_{2}$ and $\mathbf{0 . 5 0} \mathbf{~ m o l}$
HI are mixed in a $\mathbf{1 . 0} \mathbf{L}$ container and heated to a temperature where $\boldsymbol{K}_{\boldsymbol{c}}=\mathbf{0 . 4 5}$ for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HI}(\mathrm{g})$. Calculate [HI] at equilibrium.
$\rightarrow\left[\mathrm{H}_{2}\right]_{\mathrm{i}}=\left[\mathrm{I}_{2}\right]_{\mathrm{i}}=[\mathrm{HI}]_{\mathrm{i}}=0.50 \mathrm{~mol} / 1.0 \mathrm{~L}=\mathbf{0 . 5 0} \mathbf{~ M}$
\rightarrow Since all reactants and products are present initially, the direction of the reaction must be determined first
$\Rightarrow \boldsymbol{Q}_{c}$ must be calculated and compared to $\boldsymbol{K}_{\boldsymbol{c}}$

$$
Q_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{0.50^{2}}{0.50 \times \mathbf{0 . 5 0}}=1>K_{c}
$$

	\boldsymbol{Q}_{c}	$\boldsymbol{K}_{c} \Rightarrow$	reactio	rocee	the left
	[]	$\mathrm{H}_{2}(\mathrm{~g})+$	$\mathrm{I}_{2}(\mathrm{~g})$	$2 \mathrm{HI}(\mathrm{g})$	
	i	0.50	0.50	0.50	
$\stackrel{+}{+}$	c	+ x	+ x	-2x	${ }^{c} \quad\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]$
	e	$0.50+x$	$0.50+x$	0.50-2x	0.45
		$\frac{-2 x)^{2}}{(0.5+x)}$	$=0.45=$	$\sqrt{\frac{\mathbf{0 . 5 0}}{\mathbf{(0 . 5}}}$	$\frac{2 x)^{2}}{x)^{2}}=\sqrt{0.45}$
	$0.5+$	$\frac{2 x)}{x)}=\sqrt{0.4}$	$\Rightarrow(0$	$0-2 x)=$	$\sqrt{0.45} \times(0.5+x)$
	-0	$.67 \times 0.50=$	$2 x+0.6$	$x \Rightarrow x$	$\frac{0.165}{2+0.67}=0.062$
	$[\mathrm{HI}]_{\text {e }}$	$=0.50-2$	$x=0.50$	2×0.062	0.38 M

