17.5 Solving Equilibrium Problems

- Calculation of K_c (or K_p) values from measured equilibrium concentrations (or pressures)
- Calculation of equilibrium concentrations (or pressures) from K_c (or K_p) values
- Equilibrium tables ("*ice*" tables) give the initial, *i*, change of, *c*, and equilibrium, *e*, concentrations of reactants and products
 - For a general reaction: $\mathbf{A} + \mathbf{2B} \leftrightarrow \mathbf{C}$
 - \rightarrow [**A**]_i, [**B**]_i, [**C**]_i initial concentrations
 - \rightarrow [**A**]_e, [**B**]_e, [**C**]_e equilibrium concentrations
 - $\rightarrow \Delta[A], \Delta[B], \Delta[C], -$ change in the concentrations
 - \rightarrow [**A**]_e = [**A**]_i + Δ [**A**] \rightarrow same is valid for **B** and **C**

$A + 2B \leftrightarrow C$								
→Δ[C]	$\rightarrow \Delta[C] = +x$							
→∆[A]	$\rightarrow \Delta[\mathbf{A}] = -\Delta[\mathbf{C}] \times (1 \text{ mol } \mathbf{A}/1 \text{ mol } \mathbf{C}) = -\Delta[\mathbf{C}] = -x$							
$\rightarrow \Delta[B]$	$\rightarrow \Delta[B] = -\Delta[C] \times (2 \mod B/1 \mod C) = -2\Delta[C] = -2x$							
	$[] A + 2B \leftrightarrow C$							
<i>i</i> +								
<i>C</i>	c	- <i>x</i>	-2x	+x				
= e	\sim e $[A]_i - x$ $[B]_i - 2x$ $[C]_i + x$							
$\Rightarrow K_c = \frac{[C]}{([C]_i + x)} = \frac{([C]_i + x)}{([C]_i + x)}$								
$\rightarrow R_{c} - \frac{1}{[A][B]^{2}} - \frac{1}{([A]_{i} - x)([B]_{i} - 2x)^{2}}$								
\rightarrow The equation can be used to calculate K_c if x is known or to calculate x if K_c is known								

Using Equilibrium Quantities to Calculate K

- If all equilibrium concentrations are given, substitute in the mass action expression to find *K*
- If the initial concentrations and one equilibrium concentration are given, use an *ice* table to find *K*

Example: 1.00 mol of NH₃ is sealed in a 1.00 L container and heated to 500 K. Calculate K_c for $2NH_3(g) \leftrightarrow N_2(g) + 3H_2(g)$, if at equilibrium the concentration of NH₃ is **0.58 M**.

 \rightarrow [NH₃]_i = 1.00 mol/1.00 L = 1.00 M

$$\rightarrow [N_2]_i = [H_2]_i = 0$$

$$\rightarrow$$
 [NH₃]_e = 0.58 M

	[]	$[] 2NH_3(g) \leftrightarrow N_2(g) + 3H_2(g)$				
	i c	1.00	0	0		
	С	-2 <i>x</i>	+ <i>x</i>	+3 <i>x</i>		
e	e	1.00 - 2x	x	3 <i>x</i>		
→ $[NH_3]_e = 1.00 - 2x = 0.58$ ⇒ $x = (1.00 - 0.58)/2 = 0.21$ → $[N_2]_e = x = 0.21 \text{ M}$ → $[H_2]_e = 3x = 0.63 \text{ M}$						
$\Rightarrow K_{c} = \frac{[N_{2}][H_{2}]^{3}}{[NH_{3}]^{2}} = \frac{[0.21][0.63]^{3}}{[0.58]^{2}} = 0.16$						

Using K to Calculate Equilibrium Quantities

- If *K* and all but one equilibrium concentrations are given, substitute in the mass action expression for *K* to find the unknown concentration
- If the initial concentrations and *K* are given, use an *ice* table to find the equilibrium concentrations

Example: 0.50 mol of HI is sealed in a 2.0 L reactor and heated to 700°C. Calculate the equilibrium concentrations of all species if at 700°C, $K_c = 0.022$ for 2HI(g) \leftrightarrow H₂(g) + I₂(g). \rightarrow [HI]_i = 0.50 mol/2.0 L = 0.25 M

 $\rightarrow [I_2]_i = [H_2]_i = 0$

≻U	Using the quadratic formula							
in the 70 \rightarrow	Example: 0.50 mol HI and 0.30 mol H ₂ are sealed in a 2.0 L reactor and heated to 700°C. Calculate the equilibrium concentrations of all species if at 700°C, $K_c = 0.022$ for 2HI(g) \leftrightarrow H ₂ (g) + I ₂ (g). \rightarrow [HI] _i = 0.50 mol/2.0 L = 0.25 M \rightarrow [H ₂] _i = 0.30 mol/2.0 L = 0.15 M							
\rightarrow	$\rightarrow [I_2]_i = 0$							
	$\begin{bmatrix} 1 & 2HI(g) \leftrightarrow H_2(g) + I_2(g) \end{bmatrix} $							
<i>i</i> +	$\frac{1}{10000000000000000000000000000000000$							
c	$\begin{vmatrix} c \\ -2x \\ +x \\ +x \\ -x \\ -x \\ -x \\ -x \\ -x \\ -$							
= e	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							

	[]	2HI(g) ∢	\rightarrow H ₂ (g) -	+ I ₂ (g)				
i+c	i	0.25	0	0	$K_c = \frac{[\mathrm{H}_2][\mathrm{I}_2]}{[\mathrm{HI}]^2}$			
- С :	с	-2 <i>x</i>	+x	+x				
= e	e	0.25 - 2x	x	x	= 0.022			
(0	$\frac{x \cdot x}{(0.25 - 2x)^2} = 0.022 \implies \sqrt{\frac{x^2}{(0.25 - 2x)^2}} = \sqrt{0.022}$							
0.25	$\left \frac{x}{0.25 - 2x} = \sqrt{0.022} \implies x = \sqrt{0.022} \times 0.25 - \sqrt{0.022} \times 2x \right $							
	$x + 0.297x = 0.0371 \implies x = \frac{0.0371}{1 + 0.297} = 0.029$							
\Rightarrow	$\Rightarrow [\mathrm{H}_2]_{\mathrm{e}} = [\mathrm{I}_2]_{\mathrm{e}} = \mathbf{x} = 0.029 \mathrm{M}$							
\Rightarrow	\Rightarrow [HI] _e = 0.25 - 2x = 0.25 - 2×0.029 = 0.19 M							

$\frac{(0.15+x)x}{(0.25-2x)^2} = 0.022 \implies$	$\frac{0.15x + x^2}{0.25^2 - 2 \times 0.25 \times 2x + x^2}$	$\frac{1}{4x^2} = 0.022$			
$0.15x + x^2 = 0.022 \times 0.25$	$5^2 - 0.022 \times 4 \times 0.25x +$	$0.022 \times 4x^2$			
$0.15x + x^2 = 0.00138 - 0$	$0.022x + 0.088x^2$				
$0.912x^2 + 0.172x - 0.00$	138 = 0				
$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$					
$x = \frac{-0.172 + \sqrt{0.172^2} - \frac{-0.172}{100}}{-0.172^2}$	-4×0.912×(-0.00138)	- 0 00768			
2×	0.912	- 0.00700			
$\Rightarrow [I_2]_e = x = 0.0077 M$					
$\Rightarrow [H_2]_e = 0.15 + x = 0.15 + 0.00768 = 0.16 M$					
\Rightarrow [HI] _e = 0.25 - 2x = 0.25 - 2×0.00768 = 0.23 M					

Using simplifying assumptions

Example: A mixture of **0.060** M N₂ and **0.040** M H₂ is heated to a temperature where $K_c = 0.0010$ for N₂(g) + 3H₂(g) \leftrightarrow 2NH₃(g). Calculate the equilibrium concentration of NH₃.

\rightarrow [N ₂] _i = 0.060 M	
\rightarrow [H ₂] = 0.040 M	

$$\rightarrow [H_2]_i = 0.040$$
$$\rightarrow [NH_3]_i = 0$$

	[]	N ₂ (g) +	- 3H ₂ (g) ↔	> 2NH ₃ (g)	
<i>i</i> +	i	0.060	0.040	0	$K_c = \frac{[\mathrm{NH}_3]^2}{(\mathrm{NH}_3)^2}$
- <i>c</i> :	С	<i>-x</i>	<i>-3x</i>	+2 <i>x</i>	$\begin{bmatrix} \mathbf{n}_c & [\mathbf{N}_2] [\mathbf{H}_2]^3 \end{bmatrix}$
= e	e	0.060 - <i>x</i>	0.040 - 3 <i>x</i>	2x	= 0.0010

Simplifying assumptions are not always justified **Example:** A mixture of **0.060** M N₂ and **0.040** M H₂ is heated to a temperature where $K_c = 10$. for N₂(g) + 3H₂(g) \leftrightarrow 2NH₃(g). Calculate the equilibrium concentration of NH₃. \rightarrow Using the assumption from the previous problem leads to: $\frac{4x^2}{(0.060)(0.040)^3} = 10. \Rightarrow x = \sqrt{\frac{10.\times 0.060 \times 0.040^3}{4}}$

x = 0.0031

 \rightarrow The assumption is not justified since x and 3x are more than 5% of 0.060 and 0.040

 $(3 \times 0.0031/0.040) \times 100\% = 23\%$ error

\Rightarrow We must solve the equation without assumptions				
≻Successive approximation				
\rightarrow Using the same formula as in the previous problem without neglecting <i>x</i> and 3 <i>x</i> leads to:				
$x_{n+1} = \sqrt{\frac{10 \times (0.060 - x_n)(0.040 - 3x_n)^3}{4}}$				
$\int x_{n+1} - \sqrt{4}$				
\rightarrow This formula allows the calculation of the $(n+1)^{st}$ approximation for x from the n^{th} approximation				
\rightarrow For n=0 , assume $x_0 = 0$ (x is expected to be small)				
\rightarrow For n=1 (1 st iteration)				
$x_1 = \sqrt{\frac{10.\times(0.060 - 0)(0.040 - 3\times0)^3}{4}} = 0.0031$				

	$\rightarrow Q_c > K_c \Rightarrow$ the reaction proceeds to the left							
	[]	H ₂ (g) +	$H_2(g) + I_2(g) \leftrightarrow 2HI(g)$					
<i>i</i> +	i	0.50	0.50	0.50	$K_c = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]}$			
- <i>c</i> :	i c	+ <i>x</i>	+x	-2 <i>x</i>				
= e	e	0.50 + x	0.50 + x	0.50 - 2x	= 0.45			
$\overline{(0.)}$	$\frac{(0.50-2x)^2}{(0.5+x)(0.5+x)} = 0.45 \implies \sqrt{\frac{(0.50-2x)^2}{(0.5+x)^2}} = \sqrt{0.45}$							
$\frac{(0.50-2x)}{(0.5+x)} = \sqrt{0.45} \implies (0.50-2x) = \sqrt{0.45} \times (0.5+x)$								
$0.50 - 0.67 \times 0.50 = 2x + 0.67x \implies x = \frac{0.165}{2 + 0.67} = 0.062$								
\Rightarrow	\Rightarrow [HI] _e = 0.50 - 2x = 0.50 - 2×0.062 = 0.38 M							

Equilibrium Calculations for Reactions with Unknown Direction

Example: 0.50 mol H₂, 0.50 mol I₂ and 0.50 mol HI are mixed in a 1.0 L container and heated to a temperature where $K_c = 0.45$ for the reaction H₂(g) + I₂(g) \leftrightarrow 2HI(g). Calculate [HI] at equilibrium.

$$\rightarrow$$
 [H₂]_i = [I₂]_i = [HI]_i = 0.50 mol/1.0 L = **0.50 M**

→Since all reactants and products are present initially, the direction of the reaction must be determined first $\Rightarrow Q_c$ must be calculated and compared to K_c

$$Q_c = \frac{[\text{HI}]^2}{[\text{H}_2][\text{I}_2]} = \frac{0.50^2}{0.50 \times 0.50} = 1 > K_c$$