17.6 Changing Reaction Conditions and the Equilibrium State

- Le Chatelier's principle when a system at equilibrium is disturbed, the equilibrium "shifts" in a direction that minimizes the effect of the disturbance
 - A chemical system can be disturbed by changing the values of Q or K so that temporarily $Q \neq K$
 - Changing concentrations of reactants or products (*Q* changes)
 - Changing pressure for gas reactions (**Q** changes)
 - Changing temperature (K changes)

Example: Given $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g)$. How can the yield of NH_3 be increased by manipulating the concentrations of reactants and products?

- \rightarrow Add more N₂ and H₂
- \rightarrow Remove some NH₃

Changing Pressure or Volume

- Affects the concentrations of gaseous reactants and products (changes Q)
- ➤ Changing the partial pressure of a gaseous reactant or product
 - →The concentration of the reactant or product changes and the equilibrium shifts accordingly as described before

Changing Concentration

• If the concentration increases, the system reacts to consume some of it; If the concentration decreases, the system reacts to produce some of it

>Adding reactants or removing products

- →The equilibrium **shifts toward the products** in order to consume the added reactants or generate the removed products
- $\rightarrow Q$ decreases $\rightarrow Q < K \rightarrow$ reaction shifts forward

>Adding products or removing reactants

- →The equilibrium **shifts toward the reactants** in order to consume the added products or generate the removed reactants
- $\rightarrow Q$ increases $\rightarrow Q > K \rightarrow$ reaction shifts in reverse

> Changing the total pressure of the reaction mixture by changing its volume

- **Compression** ($\uparrow P$ by $\downarrow V$)
- →The equilibrium shifts in a direction that consumes gases and relieves the pressure
 - ⇒The equilibrium shifts toward the side with fewer moles of gas

Example:
$$\underline{A(g)} + \underline{B(g)} \leftrightarrow C(g)$$

 $\underline{2 \text{ mol gas}} \leftrightarrow \underline{1 \text{ mol gas}}$

$$Q_p = \frac{P_C}{P_A P_B} = \frac{(n_C RT/V)}{(n_A RT/V)(n_B RT/V)} = \frac{n_C}{n_A n_B} \times \frac{V}{RT}$$

 \Rightarrow As V is reduced, Q decreases (Q < K) and the reaction shifts forward

\triangleright Expansion ($\downarrow P$ by $\uparrow V$)

- →The equilibrium shifts in a direction that produces more gases and increases the pressure
 - ⇒The equilibrium shifts toward the side with more moles of gas
- Compression and expansion do not affect reactions in which the number of moles of gases is the same on both sides of the equation
- > Changing the total pressure of the reaction mixture by adding an inert gas
 - →The equilibrium is not affected because the partial pressures and concentrations of the components do not change

Example: Given $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g)$. How can the yield of NH₃ be increased by changing the pressure (volume) of the reaction mixture?

4 mol gas \leftrightarrow 2 mol gas

⇒ Increasing the pressure (compression) shifts the equilibrium to the right toward less moles of gas (4 $mol \rightarrow 2 mol$) and improves the yield of NH₂

Example: Given $Cl_2(g) + H_2(g) \leftrightarrow 2HCl(g)$. What is the effect of increasing the volume of the reaction container?

2 mol gas \leftrightarrow 2 mol gas

⇒ Increasing the volume (expansion) has no effect on the reaction since the number of moles of gas is the same on both sides of the equation

Changing Temperature

- Affects the value of **K**
- ➤ Increasing T by adding heat to the reaction mixture favors the endothermic reaction which consumes the added heat
- Decreasing T by removing heat from the reaction mixture favors the exothermic reaction which produces heat

Example: $A + B \leftrightarrow C + D + heat$ $\Lambda H < 0$

- →The forward reaction is exothermic, while the reverse reaction is endothermic
- \Rightarrow Increasing T favors the endothermic reaction so the reaction shifts in reverse

- \triangleright Changing T changes the value of K
 - \triangleright Increasing T increases K for endothermic reactions
 - \triangleright Increasing T decreases K for exothermic reactions
- \rightarrow Increasing T increases more the rate constant of the endothermic reaction (which has higher activation energy) $\rightarrow K = k_{fwd}/k_{rev} \Rightarrow$ If the forward reaction is endothermic, K increases

Example: Given $N_{2}(g) + 3H_{2}(g) \leftrightarrow 2NH_{3}(g)$ with $\Delta H^0 = -92 \text{ kJ/mol}$. How can the yield of NH₃ be increased by manipulating the temperature?

- → The forward reaction is exothermic
- ⇒ Lowering the temperature facilitates the forward reaction and improves the yield of NH₃

The *T* dependence of *K* is given by the van't Hoff equation

$$\ln \frac{K_2}{K_1} = -\frac{\Delta H_{rxn}^o}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

 \rightarrow The equation allows the calculation of K at one temperature knowing the value of K at another temperature and ΔH^o of the reaction

Example: Given $N_2(g) + O_2(g) \leftrightarrow 2NO(g)$ with $\Delta H^o = 181 \text{ kJ/mol}$. If $K_p = 4.3 \times 10^{-31}$ at 298 K, what is K_p at 3000 K?

$$T_1 = 298 \text{ K}$$
 $K_{p1} = 4.3 \times 10^{-31}$
 $T_2 = 3000 \text{ K}$ $K_{p2} = ?$

The Effect of Catalysts

- Catalysts **do not affect the equilibrium state** and the value of **K** because they speed up equally both the forward and reverse reactions
- Catalysts only shorten the time needed to reach equilibrium

Example: Given $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g)$ with $\Delta H^0 = -92$ kJ/mol. What are the optimum conditions for the synthesis of NH₃?

- →Pump in more N_2 and H_2 and remove NH_3 (NH_3 can be removed by cooling → condensation)
- \rightarrow Increase P and decrease T
- \rightarrow At lower T, a catalyst is needed to speed up the process

$$\ln \frac{K_{p2}}{4.3 \times 10^{-31}} = -\frac{181 \times 10^{3} \text{ J/mol}}{8.314 \text{ J/mol} \cdot \text{K}} \left(\frac{1}{3000 \text{K}} - \frac{1}{298 \text{K}} \right)$$

$$\frac{K_{p2}}{4.3 \times 10^{-31}} = \exp \left(-\frac{181 \times 10^{3}}{8.314} \left(\frac{1}{3000} - \frac{1}{298} \right) \right)$$

$$K_{p2} = 4.3 \times 10^{-31} \times \exp \left(-\frac{181 \times 10^{3}}{8.314} \left(\frac{1}{3000} - \frac{1}{298} \right) \right)$$

$$K_{p2} = 1.6 \times 10^{-2}$$

reaction is endothermic and therefore is favored by \(^{T}\)

 $\rightarrow K_n$ is much larger at 3000 K because the forward

Table 17.4 Effect of Various Disturbances on an Equilibrium System		
Disturbance	Net Direction of Reaction	Effect on Value of K
Concentration		
Increase [reactant]	Toward formation of product	None
Decrease [reactant]	Toward formation of reactant	None
Increase [product]	Toward formation of reactant	None
Decrease [product]	Toward formation of product	None
Pressure		
Increase P (decrease V)	Toward formation of fewer moles of gas	None
Decrease <i>P</i> (increase <i>V</i>)	Toward formation of more moles of gas	None
Increase <i>P</i> (add inert gas, no change in <i>V</i>)	None; concentrations unchanged	None
Temperature		
Increase T	Toward absorption of heat	Increases if $\Delta H_{\rm rxn}^0 > 0$ Decreases if $\Delta H_{\rm rxn}^0 < 0$
Decrease T	Toward release of heat	Increases if $\Delta H_{\rm rxn}^0 < 0$ Decreases if $\Delta H_{\rm rxn}^0 > 0$
Catalyst added	None; forward and reverse equilibrium attained sooner; rates increase equally	None