12.2 Quantitative Aspects of Phase Changes

- **Heating-cooling curves** – show the variation of the temperature of a sample as it is heated or cooled at a constant rate
- **Regions in the heating-cooling curves**
 - **Sloped regions** – correspond to temperature changes in the pure solid, liquid or gas phases (slope depends on the heat capacity of each phase; E_k of molecular motion changes)
 - **Flat regions** – correspond to phase changes (temperature remains constant; E_p of intermolecular attraction changes)

\[
q = nC_{\text{water(g)}} \Delta T \quad q = nC_{\text{water(l)}} \Delta T \quad q = nC_{\text{water(s)}} \Delta T
\]

n – number of moles of water; C – molar heat capacity

The Equilibrium Nature of Phase Changes

- **Liquid-gas equilibria (liquid ↔ gas)**
 - At constant temperature in a closed container a **dynamic equilibrium** is established between vaporization and condensation
 - At equilibrium the rate of vaporization equals the rate of condensation

- **Vapor pressure (P_v)** – the pressure exerted by the vapors over a liquid at equilibrium
 - P_v depends only on the nature of the liquid and T (if P_v is disturbed by compression or expansion, the equilibrium shifts to restore the original P_v)
 - In the presence of other gases over the liquid, P_v is the **partial pressure** of the vapors

- P_v increases with decreasing the strength of the intermolecular forces (IF)
 - In order to vaporize, a molecule must escape the forces of attraction, IF, between the molecules in the liquid
• \(P_v \) increases with increasing temperature
 - In order to vaporize, a molecule must have enough kinetic energy to escape the liquid
 - Increasing \(T \) increases the fraction of molecules having enough kinetic energy to escape the liquid

- Maxwell distribution

- Examples:
 - The \(IF \) in water are stronger than in diethyl ether \(\Rightarrow \) the \(P_v \) of water is lower than that of diethyl ether at a given temperature (20°C)
 - The \(P_v \) of all three liquids increases exponentially with increasing the temperature

- Clausius-Clapeyron equation – relates \(P_v \), \(T \) and \(\Delta H_{vap} \):
 \[
 \ln P_v = -\frac{\Delta H_{vap}}{R} \left(\frac{1}{T} \right) + \text{const.}
 \]
 - A plot of \(\ln P_v \) versus \((1/T) \) should yield a straight line with slope \(-\Delta H_{vap}/R\)
 \(\Rightarrow \) Can be used to determine \(\Delta H_{vap} \) by measuring \(P_v \) at different \(T \)s

- Boiling – in an open container a liquid starts boiling (forming bubbles inside) when \(P_v \) reaches the external pressure, \(P_{atm} \)
 - Boiling point \((T_b) \) – the \(T \) at which \(P_v = P_{atm} \)
 \(\Rightarrow T_b \) increases with increasing \(P_{atm} \) since at higher \(P_{atm} \), higher \(P_v \) must be achieved for boiling to occur, so higher \(T \) is needed
 - Normal boiling point – the \(T_b \) at \(P_{atm} = 760 \text{ torr} \)
Example: Estimate the T_b (boiling temperature) of water on Mt. Everest where P_{atm} is ~270 torr, if its ΔH_{vap} is 40.7 kJ/mol.

→ Use the Clausius-Clapeyron equation for two Ts:

Normal boiling point $\rightarrow T_1 = 100^\circ C$ $\rightarrow P_1 = 760$ torr

Boiling point Everest $\rightarrow T_2 = ???$ $\rightarrow P_2 = 270$ torr

\[
\ln \frac{270 \text{ torr}}{760 \text{ torr}} = \frac{-40.7 \text{ kJ/mol}}{8.314 \times 10^{-3} \text{ kJ/mol} \cdot \text{K}} \left(\frac{1}{T_2} - \frac{1}{373 \text{ K}} \right)
\]

\[
\frac{1}{T_2} - \frac{1}{373} = \frac{8.314 \times 10^{-3}}{-40.7} \ln \frac{270}{760} = 2.11 \times 10^{-4}
\]

\[
\frac{1}{T_2} = 2.11 \times 10^{-4} + \frac{1}{373} = 2.89 \times 10^{-3} \quad T_2 = 346 \text{ K} = 73^\circ C
\]

Phase Diagrams

- Specify the stability of the various phases at different T and P
 - Solid lines – phase boundaries
 - Between the lines – one stable phase
 - On the lines – two phases in equilibrium
 - At the triple point – three phases in equilibrium
 - Critical point – the end of the liquid/gas phase boundary

- Solid-liquid equilibria (solid ↔ liquid)
 - At constant temperature a dynamic equilibrium is established as the rate of melting equals the rate of freezing
 - *Melting* (freezing) point (T_m) – pressure affects T_m only very slightly

- Solid-gas equilibria (solid ↔ gas)
 - At constant temperature a dynamic equilibrium is established as the rate of sublimation equals the rate of deposition
 - Since the vapor pressure of solids is typically quite low, solid-gas equilibria are not very common at normal T and P conditions

- The slope of the solid/liquid boundary is normally positive, but in a few cases like H$_2$O, it’s negative \Rightarrow ice melts at lower T when the P is higher

 - **Critical temperature** (T_c) – vapors can’t be liquefied at any P if T is greater than T_c

 - **Critical pressure** (P_c) – P at the critical point

 - **Supercritical fluid** – above T_c and P_c – the liquid and vapor merge into a single phase (resembles both phases)