12.2 Quantitative Aspects of Phase Changes

- Heating-cooling curves show the variation of the temperature of a sample as it is heated or cooled at a constant rate
- Regions in the heating-cooling curves
 - Sloped regions correspond to temperature changes in the pure solid, liquid or gas phases (slope depends on the heat capacity of each phase; E_k of molecular motion changes)
 - Flat regions correspond to phase changes (temperature remains constant; E_p of intermolecular attraction changes)

The Equilibrium Nature of Phase Changes

- Liquid-gas equilibria (**liquid ↔ gas**)
 - At constant temperature in a closed container a dynamic equilibrium is established between vaporization and condensation
 - At equilibrium the rate of vaporization equals the rate of condensation

- Vapor pressure (P_{ν}) the pressure exerted by the vapors over a liquid at equilibrium
 - $-P_{v}$ depends only on the nature of the liquid and *T* (if P_{v} is disturbed by compression or expansion, the equilibrium shifts to restore the original P_{v})
 - In the presence of other gases over the liquid, P_{v} is the **partial pressure** of the vapors
- *P_v* increases with decreasing the strength of the intermolecular forces (*IF*)
 - In order to vaporize, a molecule must escape the forces of attraction, *IF*, between the molecules in the liquid

• Examples:

- The *IF* in water are stronger than in diethyl ether \Rightarrow the P_{ν} of water is lower than that of diethyl ether at a given temperature (20°C)
- The P_{ν} of all three liquids increases exponentially with increasing the temperature

- If two equations are written for two different T_s , T_1 and T_2 , at which the P_v s are P_1 and P_2 and the 1st equation is subtracted from the 2nd, one gets:

$$\ln \frac{P_2}{P_1} = \frac{-\Delta H_{vap}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

• **Boiling** – in an open container a liquid starts boiling (forming bubbles inside) when P_v reaches the external pressure, P_{atm}

-Boiling point (T_b) - the T at which $P_v = P_{atm}$

 $\Rightarrow T_b \text{ increases with increasing } P_{atm} \text{ since at higher } P_{atm}, \text{ higher } P_v \text{ must be achieved for boiling to occur, so higher } T \text{ is needed}$

- Normal boiling point – the T_b at $P_{atm} = 760$ torr

Example: Estimate the T_b of water on Mt. Everest where P_{atm} is ~270 torr, if its ΔH_{vap} is 40.7 kJ/mol. \rightarrow Use the Clausius-Clapeyron equation for two Ts: Normal boiling point $\rightarrow T_1 = 100^{\circ}\text{C} \rightarrow P_1 = 760$ torr Boiling point Everest $\rightarrow T_2 = ??? \rightarrow P_2 = 270$ torr $\ln \frac{270 \text{ torr}}{760 \text{ torr}} = \frac{-40.7 \text{ kJ/mol}}{8.314 \times 10^{-3} \text{ kJ/mol} \cdot \text{K}} \left(\frac{1}{T_2} - \frac{1}{373 \text{ K}}\right)$ $\frac{1}{T_2} - \frac{1}{373} = \frac{8.314 \times 10^{-3}}{-40.7} \ln \frac{270}{760} = 2.11 \times 10^{-4}$ $\frac{1}{T_2} = 2.11 \times 10^{-4} + \frac{1}{373} = 2.89 \times 10^{-3}$ $T_2 = 346 \text{ K} = 73^{\circ}\text{C}$

- Solid-liquid equilibria (solid ↔ liquid)
 - At constant temperature a dynamic equilibrium is established as the rate of melting equals the rate of freezing
 - Melting (freezing) point (T_m) pressure affects T_m only very slightly
- Solid-gas equilibria (**solid ↔ gas**)
 - At constant temperature a **dynamic equilibrium** is established as the rate of sublimation equals the rate of deposition
 - Since the vapor pressure of solids is typically quite low, solid-gas equilibria are not very common at normal *T* and *P* conditions

