Acid-Base Equilibria

- Acids sharp, sour taste; Bases soapy, bitter taste
- Neutralization (proton transfer) reactions
 - acid + base \rightarrow salt + water (or other products)
- Proton (H⁺) strongly hydrated in water $H(H_2O)_n^+$
- Hydronium ion H_3O^+

18.1 Acid-Base Definitions

- Arrhenius definition defines acids and bases in terms of their behavior in water
 - Acids contain H and release $\mathbf{H}^{\!+}$ in water
 - Bases contain OH and release OH- in water

 Arrhenius acid-base reaction – a combination of the H⁺ from the acid with the OH⁻ from the base

 $H^+ + OH^- \rightarrow H_2O$

- The Arrhenius definition has severe limitations
 - Limited to water solutions
 - Some bases do not contain OH (NH₃, amines, Na₂S, Na₂CO₃, ...)
- **Brønsted-Lowry definition** defines acids and bases in relation to the H⁺ ion (**proton**)
 - Acids proton donors (must contain H)
 - Bases proton acceptors (must contain a lone pair to bind the H^+)
 - All Arrhenius bases are also B-L bases, but not all B-L bases are Arrhenius bases

 Weak acids – partially deprotonated in H₂O → HF, HCN, H₂S, HCOOH, CH₃COOH,
Example: HF(aq) + H₂O(1) ↔ F⁻ + H₃O⁺ → Only a small fraction (~2.5%) of the HF molecules are dissociated to ions
H⁺ B + H₂O → HB⁺ + OH⁻ protonation of the base B
Strong bases – completely protonated (dissociated, ionized) in H₂O → Group I and II oxides and hydroxides
Example: CaO(s) + H₂O(1) → Ca²⁺ + 2OH⁻

Acid	+	Base	r ===	Base	+	Acid			
		Conjugate Pair							
HF	+	H_2O	\Rightarrow	F^{-}	+	H_3O^+			
HCOOH	+	CN^{-}	\Rightarrow	$HCOO^{-}$	+	HCN			
NH_4^+	+	CO_{3}^{2-}	-	NH ₃	+	HCO ₃			
$H_2PO_4^-$	+	OH^{-}	-	HPO_4^{2-}	+	H_2O			
Exam	ple:	Identify reactior	the con	jugate ac	id-ba	ase			
pairs in				-	~				
pairs in	Н	$SO_{2}^{-} + S$	$S^{2-} \leftrightarrow S^{2-}$	$SO_{2}^{2} + H$	S-				

Quantifying Acid/Base Strengths• Acid ionization constant (K_a)
– For a general weak acid, HA, in water
 $HA + H_2O \iff H_3O^+ + A^ K_c = \frac{[H_3O^+][A^-]}{[HA][H_2O]} \qquad \rightarrow [H_2O]$ can be assumed
constant and combined
with K_c $\Rightarrow K_a = \frac{[H_3O^+][A^-]}{[HA]} \qquad \rightarrow K_a = K_c[H_2O]$ $\uparrow K_a \Leftrightarrow \uparrow [H_3O^+]$ and $\uparrow [A^-] \Leftrightarrow \uparrow\%$ dissociation
Higher $K_a \Leftrightarrow$ Stronger acid

Table 18.2 K _a Values for Some Monoprotic Acids at 25°C						
Name (Formula)	Lewis Structure*	Ka				
Chlorous acid (HClO ₂)	H−ö−ä=ö	1.12×10^{-2}				
Nitrous acid (HNO ₂)	H—Ö—N=Ö	7.1×10^{-4}				
Hydrofluoric acid (HF)	н—Ё:	6.8×10^{-4}				
Formic acid (HCOOH) Acetic acid (CH ₃ COOH)	н—с—ё—н н :0: н—с—ё—н н :0: н == н	1.8×10^{-4} 1.8×10^{-5}	ACID STRENGTH			
Hypochlorous acid (HClO)	н—ё—ё	2.9×10^{-8}				
Hypobromous acid (HBrO)	H—Ö—Ër:	2.3×10^{-9}				
Hydrocyanic acid (HCN)	H—C≡N:	6.2×10^{-10}				
Hypoiodous acid (HIO)	н—ё—ї:	2.3×10^{-11}				

Table 18.6 K _b Values for Some Molecular (Amine) Bases at 25°C						
Name (Formula)	Lewis Structure*	Kb				
Diethylamine [(CH ₃ CH ₂) ₂ NH]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.6×10 ⁻⁴				
Dimethylamine [(CH ₃) ₂ NH]		5.9×10 ⁻⁴				
Methylamine (CH ₃ NH ₂)	н н—с—й—н н н	4.4×10 ⁻⁴				
Ammonia (NH ₃)	н—й—н н	1.76×10 ⁻⁵				
Pyridine (C ₅ H ₅ N)	(ON:	1.7×10^{-9}				
Aniline (C ₆ H ₅ NH ₂)	Ю́н-й ц	4.0×10 ⁻¹⁰				

