

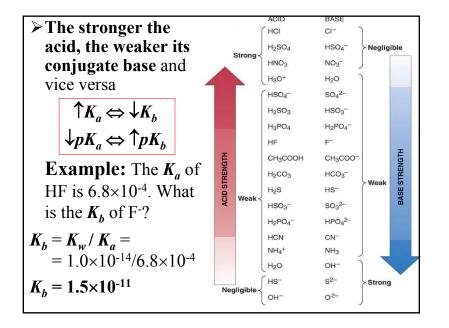
>At 25°C, $K_w = 1.0 \times 10^{-14}$
> In pure water \rightarrow [H ₃ O ⁺] = [OH ⁻] = x
$\rightarrow K_w = x^2 \rightarrow x = \sqrt{K_w} = \sqrt{1.0 \times 10^{-14}} = 1.0 \times 10^{-7}$
$\Rightarrow [H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$
> In water solutions \rightarrow [H ₃ O ⁺] and [OH ⁻] are inversely proportional to each other
$\rightarrow K_{w} = [\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{OH}^{-}] \implies \uparrow [\mathrm{H}_{3}\mathrm{O}^{+}] \Leftrightarrow \downarrow [\mathrm{OH}^{-}]$
\Rightarrow H ₃ O ⁺ and OH ⁻ are present in different proportions in both acid and base solutions
Neutral solutions \rightarrow [H ₃ O ⁺] = [OH ⁻]
Acidic solution \rightarrow [H ₃ O ⁺] > [OH ⁻]
Basic solutions \rightarrow [H ₃ O ⁺] < [OH ⁻]

Example: Calculate the concentrations of H_3O^+ and OH⁻ in 0.10 M HCl and 0.10 M Ba(OH)₂ solutions. \rightarrow HCl is a strong acid \rightarrow completely dissociated in water solutions; HCl + H₂O \rightarrow H₃O⁺ + Cl⁻ \Rightarrow 0.10 M HCl \rightarrow [H₃O⁺] = 0.10 M \Rightarrow [OH⁻] = $K_w/$ [H₃O⁺] = 1.0×10⁻¹⁴/0.10 \Rightarrow [OH⁻] = 1.0×10⁻¹³ M \Rightarrow [H₃O⁺] >> [OH⁻] \rightarrow Ba(OH)₂ is a strong base \rightarrow completely dissociated in water solutions; Ba(OH)₂ \rightarrow Ba²⁺ + 2OH⁻ \Rightarrow 0.10 M Ba(OH)₂ \rightarrow [OH⁻] = 0.20 M \Rightarrow [H₃O⁺] = $K_w/$ [OH⁻] = 1.0×10⁻¹⁴/0.20 \Rightarrow [H₃O⁺] = 5.0×10^{-14} M \Rightarrow [H₃O⁺] << [OH⁻] The pH Scale • The pH scale is a logarithmic scale $pH = -\log[H_3O^+]$ $\rightarrow \log[H_3O^+] = -pH \implies [H_3O^+] = 10^{-pH}$ $\uparrow [H_3O^+] \Leftrightarrow \downarrow pH$ $\rightarrow \text{If } [H_3O^+] = [OH^-] = 1 \times 10^{-7} \text{ M} \text{ (neutral solution)}$ $\rightarrow pH = -\log(1 \times 10^{-7}) \implies \text{neutral solution} \implies pH = 7$ $\Rightarrow \text{ If } [H_3O^+] > 1 \times 10^{-7} \text{ M} \implies \text{acidic solution} \implies pH < 7$ $\Rightarrow \text{ If } [H_3O^+] < 1 \times 10^{-7} \text{ M} \implies \text{basic solution} \implies pH < 7$ $\Rightarrow \text{ If } [H_3O^+] < 1 \times 10^{-7} \text{ M} \implies \text{basic solution} \implies pH > 7$ Examples: $[H_3O^+] = 1 \implies pH = -\log 1 = 0$ $[H_3O^+] = 10^{-14} \implies pH = -\log 10^{-14} = 14$

• The <i>p</i> -notation $\rightarrow pX = -\log X$
$pOH = -\log[OH^{-}]$
$\rightarrow \log[OH^{-}] = -pOH \implies [OH^{-}] = 10^{-pOH}$
$pK_w = -\log K_w$
\rightarrow [H ₃ O ⁺][OH ⁻] = $K_{w} \leftarrow$ (take a -log)
$\rightarrow -\log[\mathrm{H}_{3}\mathrm{O}^{+}] + (-\log[\mathrm{OH}^{-}]) = -\log \mathbf{K}_{w}$
$\Rightarrow pH + pOH = pK_w$
\rightarrow At 25°C, $K_w = 1.0 \times 10^{-14} \rightarrow pK_w = 14.00$
$\Rightarrow pH + pOH = 14.00$
\rightarrow If $pH = 7 \rightarrow pOH = 7 \rightarrow$ neutral solution
\rightarrow Acidic (\downarrow pH, \uparrow pOH); Basic (\uparrow pH, \downarrow pOH)

Example: A household ammonia solution has a pH of **11.92**. What is the pOH and the concentration of OH⁻ in it?

 $\rightarrow pOH = 14.00 - pH = 14.00 - 11.92 = 2.08$


 \rightarrow [OH⁻] = 10^{-pOH} = 10^{-2.08} = 8.3×10⁻³

Note: The # of sig. figs in $[OH^-]$ (or $[H_3O^+]$) equals the number of decimal places in *pOH* (or *pH*)

- Measuring *pH* in the laboratory
 - Indicators have different colors at different *pH* (*pH* paper, indicator solutions)
 - -*pH* meters measure the *pH* by measuring the potential of a *pH* sensitive electrode immersed in the solution (more accurate)

		[11.0+1			<u></u>
		[H ₃ O+]	рН	[OH-]	рОН
	2	1.0 x 10 ⁻¹⁵	15.00	1.0 x 10 ¹	-1.00
0		1.0 x 10 ⁻¹⁴	14.00	1.0 x 10 ⁰	0.00
MORE BASIC		1.0 x 10 ⁻¹³	13.00	1.0 x 10 ⁻¹	1.00
	BASIC	1.0 x 10 ⁻¹²	12.00	1.0 x 10 ⁻²	2.00
		1.0 x 10 ⁻¹¹	11.00	1.0 x 10 ⁻³	3.00
		1.0 x 10 ⁻¹⁰	10.00	1.0 x 10 ⁻⁴	4.00
		1.0 x 10 ⁻⁹	9.00	1.0 x 10 ⁻⁵	5.00
	and the set of the second	1.0 x 10 ⁻⁸	8.00	1.0 x 10 ⁻⁶	6.00
	NEUTRAL	1.0 x 10 ⁻⁷	7.00	1.0 x 10 ⁻⁷	7.00
		1.0 x 10 ⁻⁶	6.00	1.0 x 10 ⁻⁸	8.00
		1.0 x 10 ⁻⁵	5.00	1.0 x 10 ⁻⁹	9.00
ACIDIC		1.0 x 10 ⁻⁴	4.00	1.0 x 10 ⁻¹⁰	10.00
ACI	401010	1.0 x 10 ⁻³	3.00	1.0 x 10 ⁻¹¹	11.00
提	ACIDIC	1.0 x 10 ⁻²	2.00	1.0 x 10 ⁻¹²	12.00
MORE		1.0 x 10 ⁻¹	1.00	1.0 x 10 ⁻¹³	13.00
		1.0 x 10 ⁰	0.00	1.0 x 10 ⁻¹⁴	14.00
		1.0 x 10 ¹	-1.00	1.0 x 10 ⁻¹⁵	15.00

 $K_a \text{ and } K_b \text{ of a Conjugate Acid-Base Pair}$ • In a solution of the weak acid HA, both HA and its conjugate base, A⁻, react with water HA + H₂O ↔ A⁻ + H₃O⁺ K_a (of HA) A⁻ + H₂O ↔ HA + OH⁻ K_b (of A⁻) (+ → H₂O + H₂O ↔ H₃O⁺ + OH⁻ K_w = K_a×K_b K_a × K_b = $\frac{[H_3O^+][A^-]}{[HA]} \times \frac{[HA][OH^-]}{[A^-]} = [H_3O^+][OH^-] = K_w$ → For a conjugate acid-base pair → $K_a \times K_b = K_w$ $-\log K_a + (-\log K_b) = -\log K_w$ ⇒ $pK_a + pK_b = pK_w$ → At 25°C, $pK_a + pK_b = 14.00$

18.3 Relative Acid-Base Strength and the Net Direction of Reaction • An acid-base reaction proceeds to a greater extent from the stronger acid and stronger base towards the weaker acid and weaker base HA +B \leftrightarrow A⁻ + HB^+ stronger acid + stronger base \rightarrow weaker base + weaker acid \rightarrow The reaction is shifted towards A⁻ and HB⁺ ($K_c > 1$) **Examples:** HF $NH_3 \leftrightarrow F^- + NH_4^+$ +stronger acid + stronger base \rightarrow weaker base + weaker acid HF + H₂O \leftrightarrow F⁻ + H₂O⁺ weaker acid + weaker base \leftarrow stronger base + stronger acid

Example:

Given $K_a(\text{HF}) = 6.8 \times 10^{-4}$ and $K_a(\text{HCN}) = 6.2 \times 10^{-10}$, determine the preferred direction of the reaction $\text{F}^- + \text{HCN} \leftrightarrow \text{HF} + \text{CN}^-$

- \rightarrow Compare the strengths of the acids on both sides
 - \rightarrow HF is stronger than HCN (HF has higher K_a value)
- \rightarrow Compare the strengths of the bases on both sides
 - → Since HF is a stronger acid than HCN, the conjugate base of HF, F⁻, is a weaker base than the conjugate base of HCN, CN⁻
 - \rightarrow CN⁻ is stronger than F⁻ (CN⁻ has higher K_b value)
- \Rightarrow F⁻ + HCN \leftrightarrow HF + CN⁻ is shifted to the left ($K_c < 1$)