18.4 Solving Problems Involving Weak Acid Equilibria

- In a water solution of the weak acid, HA, there are two sources of $\mathrm{H}_{3} \mathrm{O}^{+}$:

1. $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \quad$ (dissociation of HA)
2. $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$(autoionization)
$\rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{1}=\left[\mathrm{A}^{-}\right] \quad$ and $\quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{2}=\left[\mathrm{OH}^{-}\right]$
$\rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{1}+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{2}=\left[\mathrm{A}^{-}\right]+\left[\mathrm{OH}^{-}\right]$
\rightarrow If HA is not very dilute or very weak, the autoionization can be neglected and $\left[\mathrm{OH}^{-}\right] \ll\left[\mathrm{A}^{-}\right]$

$$
\Rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \approx\left[\mathrm{A}^{-}\right]=x
$$

$>$ Using equilibrium tables
\rightarrow If he autoionization of water is neglected

$\underset{+}{ }$	[]	$\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$			$\boldsymbol{K}_{a}=\frac{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
	i	$C_{H A}$	0	0	
0	c	-x	$+x$	$+x$	$K_{a}=\boldsymbol{x}^{2}$
0	e	$C_{H A}-x$	x	x	$C_{H A}-\boldsymbol{x}$

\rightarrow The quadratic equation can be solved for x in order to determine $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\boldsymbol{p} \boldsymbol{H}$
\rightarrow If \boldsymbol{x} is less than 5% of $\boldsymbol{C}_{\boldsymbol{H} A}, \boldsymbol{x}$ can be neglected in the denominator (5% rule) \rightarrow works if $\boldsymbol{C}_{H A}$ is relatively large and $\boldsymbol{K}_{\boldsymbol{a}}$ is small $\left(\boldsymbol{C}_{\boldsymbol{H} A} / \boldsymbol{K}_{a}>400\right)$

$$
K_{a}=x^{2} / C_{H A} \quad x=\left(K_{a} C_{H A}\right)^{1 / 2}=\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]
$$

- In water solution, the weak acid HA exists in two forms \rightarrow undissociated (HA) and dissociated (A^{-})
$\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}$
$\rightarrow \boldsymbol{C}_{\boldsymbol{H A}}$ - total concentration of HA
$\rightarrow C_{H A}=[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]$

$$
\Rightarrow[\mathrm{HA}]=C_{H A}-\left[\mathrm{A}^{-}\right]=C_{H A}-x
$$

$\rightarrow \mathrm{So}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\boldsymbol{x},\left[\mathrm{A}^{-}\right]=\boldsymbol{x},[\mathrm{HA}]=C_{H A}-\boldsymbol{x}$

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{x^{2}}{C_{H A}-x}
$$

Finding $\boldsymbol{K}_{\boldsymbol{a}}$ Given Concentrations or $\boldsymbol{p} \boldsymbol{H}$

Example: If the $\boldsymbol{p} \boldsymbol{H}$ of a $\mathbf{0 . 2 0} \mathrm{M} \mathrm{HCN}$ solution is 4.95, calculate the K_{a} of HCN .
$\rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-4.95}=1.1 \times 10^{-5}=\boldsymbol{x}$
$\rightarrow \boldsymbol{C}_{\boldsymbol{H C N}}=0.20 \quad \rightarrow \quad \boldsymbol{x} \ll 5 \%$ of $\boldsymbol{C}_{\boldsymbol{H C N}}$

[]	$\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}^{-}$			$K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CN}^{-}\right]}{[\mathrm{HCN}]}$		
i	0.20	0	0			
c	-x	$+x$	$+x$		\boldsymbol{x}^{2}	
e	0.20-x	x	x		нс	

$\Rightarrow \boldsymbol{K}_{\boldsymbol{a}}=\boldsymbol{x}^{2} / \boldsymbol{C}_{\boldsymbol{H C N}}=\left(1.1 \times 10^{-5}\right)^{2} / 0.20=\mathbf{6 . 3 \times 1 0 ^ { - 1 0 }}$
[Note: $C_{H A} / K_{a}=0.20 / 6.3 \times 10^{-10}=3.2 \times 10^{8} \gg 400$]

Finding Concentrations and $\boldsymbol{p H}$ Given $\boldsymbol{K}_{\boldsymbol{a}}$

Example: What is the $\boldsymbol{p H}$ of a $\mathbf{0 . 3 0}$ M HF solution? $\left(K_{a}=\mathbf{6 . 8} \times \mathbf{1 0}^{-4}\right.$ for HF)

	$\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$			[${ }_{4}$
i	0.30	0	0	
c	-x	+ x	$+x$	$K_{a}=\frac{x^{2}}{C} \approx x^{2}$
e	0.30-x	x		
$\rightarrow \boldsymbol{C}_{\boldsymbol{H F}}=0.30 \rightarrow$ assume $\boldsymbol{x}<5 \%$ of $\mathbf{0 . 3}$				
$\Rightarrow \boldsymbol{x}=\left(K_{a} C_{H F}\right)^{1 / 2}=\left(6.8 \times 10^{-4} \times 0.30\right)^{1 / 2}=1.4 \times 10^{-2}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$				
$\Rightarrow \boldsymbol{p H}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(1.4 \times 10^{-2}\right)=\mathbf{1 . 8 5}$				
[Check assumption: $\left(1.4 \times 10^{-2} / 0.30\right) \times 100=4.8 \%<5 \%$]				

Example: Calculate the \% dissociation for two HF solutions with concentrations 0.30 and $\mathbf{3 . 0} \mathbf{M}$. ($\boldsymbol{K}_{a}=\mathbf{6 . 8} \times 10^{-4}$ for HF)
\rightarrow For the $\mathbf{0 . 3 0}$ M HF from the previous example:
$\boldsymbol{x}=\left(K_{a} C_{H F}\right)^{1 / 2}=\left(6.8 \times 10^{-4} \times 0.30\right)^{1 / 2}=1.4 \times 10^{-2}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\%$ dissociated $=\left(1.4 \times 10^{-2} / 0.30\right) \times 100=\mathbf{4 . 8 \%}$
\rightarrow For the 3.0 M HF similarly:
$\boldsymbol{x}=\left(K_{a} C_{H F}\right)^{1 / 2}=\left(6.8 \times 10^{-4} \times 3.0\right)^{1 / 2}=4.5 \times 10^{-2}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ \% dissociated $=\left(4.5 \times 10^{-2} / 3.0\right) \times 100=\mathbf{1 . 5 \%}$
\Rightarrow Increasing the concentration from 0.30 to 3.0 M decreases the $\%$ dissociated from 4.8 to 1.5%

Extent of Acid Dissociation

- Percent dissociation

$$
\begin{aligned}
& \mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
& \rightarrow \boldsymbol{C}_{\boldsymbol{H A}}=[\mathrm{HA}]+\left[\mathrm{A}^{-}\right] \quad \rightarrow\left[\mathrm{A}^{-}\right] \approx\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \rightarrow\left[\mathrm{A}^{-}\right]=\boldsymbol{x} \text { (dissociated form of the acid) } \\
& \boldsymbol{\%} \text { dissociated }=\frac{\left[\mathrm{A}^{-}\right]}{\boldsymbol{C}_{\boldsymbol{H A}}} \times \mathbf{1 0 0}=\frac{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]}{\boldsymbol{C}_{\boldsymbol{H A}}} \times \mathbf{1 0 0}=\frac{\boldsymbol{x}}{\boldsymbol{C}_{\boldsymbol{H A}}} \times \mathbf{1 0 0}
\end{aligned}
$$

$>$ For a given acid, \% dissociated decreases with increasing the total concentration of the acid, $\boldsymbol{C}_{\boldsymbol{H A}}$

$$
\uparrow C_{H A} \Leftrightarrow \downarrow \% \text { dissociation }
$$

The Behavior of Polyprotic Acids

- Polyprotic Acids - can donate more than one proton $\left(\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}, \ldots\right)$
- For a general diprotic acid, $\mathrm{H}_{2} \mathrm{~A}$

$$
\begin{array}{lc}
\begin{array}{l}
\mathrm{H}_{2} \mathrm{~A}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HA}^{-} \\
\mathrm{HA}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{2-}
\end{array} & \boldsymbol{K}_{a 1} \\
\boldsymbol{K}_{a 1}=\frac{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]\left[\mathbf{H A}^{-}\right]}{\left[\mathbf{H}_{2} \mathbf{A}\right]}
\end{array} \quad \boldsymbol{K}_{a 2}=\frac{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]\left[\mathbf{A}^{2-}\right]}{\left[\mathbf{H A}^{-}\right]} .
$$

$>$ Almost all polyprotic acids (except $\mathrm{H}_{2} \mathrm{SO}_{4}$) are weak in all stages of dissociation and become weaker with each successive dissociation

$$
\boldsymbol{K}_{a 1}>\boldsymbol{K}_{a 2}>\boldsymbol{K}_{a 3} \ldots
$$

$>$ The second and third dissociations are less pronounced because it's harder to remove an H^{+} from negatively charged ions
$>$ Equilibrium calculations are greatly simplified by neglecting subsequent dissociations since they contribute negligible amounts of $\mathrm{H}_{3} \mathrm{O}^{+}$
Example: Calculate the $\boldsymbol{p} \boldsymbol{H}$ and the concentrations of all ionized forms for a $\mathbf{0 . 1 0} \mathbf{M ~ H}_{3} \mathrm{PO}_{4}$ solution. $\left(K_{a 1}=7.2 \times 10^{-3}, K_{a 2}=6.3 \times 10^{-8}, K_{a 3}=4.2 \times 10^{-13}\right)$ $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \quad \boldsymbol{K}_{a 1}$ $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HPO}_{4}{ }^{2-} \quad \boldsymbol{K}_{a 2}$ $\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{PO}_{4}^{3-} \quad \boldsymbol{K}_{a 3}$

$$
x=\frac{-7.2 \times 10^{-3}+\sqrt{\left(7.2 \times 10^{-3}\right)^{2}+4 \times 7.2 \times 10^{-4}}}{2}=2.3 \times 10^{-2}
$$

$$
\Rightarrow x=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{H}_{2} \mathbf{P O}_{4}^{-}\right]=\mathbf{2 . 3} \times 10^{-2} \mathbf{M}
$$

$$
\Rightarrow \boldsymbol{p} \boldsymbol{H}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(2.3 \times 10^{-2}\right)=1.63
$$

\rightarrow To calculate the concentrations of the other species, use the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]$from the $1^{\text {st }}$ ionization

$$
\begin{aligned}
& K_{a 2}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{H}_{2} \mathbf{P O}_{4}^{-}\right]} \quad K_{a 3}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{PO}_{4}^{3-}\right]}{\left[\mathrm{HPO}_{4}^{2-}\right]} \\
& {\left[\mathrm{HPO}_{4}^{2-}\right]=\frac{K_{a 2}\left[\mathbf{H}_{2} \mathbf{P O}_{4}^{-}\right]}{\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]}=\frac{6.3 \times 10^{-8} \times 2.3 \times 10^{-2}}{2.3 \times 10^{-2}}=6.3 \times 10^{-8}} \\
& {\left[\mathrm{PO}_{4}^{3-}\right]=\frac{\boldsymbol{K}_{a 3}\left[\mathbf{H P O}_{4}^{2-}\right]}{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]}=\frac{4.2 \times 10^{-13} \times 6.3 \times 10^{-8}}{2.3 \times 10^{-2}}=1.1 \times \mathbf{1 0}^{-18}}
\end{aligned}
$$

