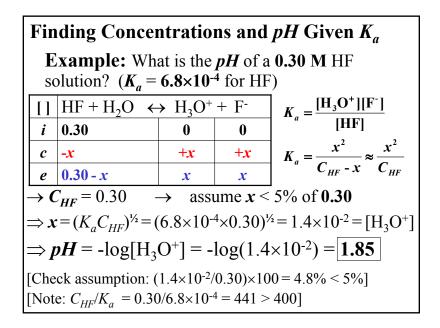
18.4 Solving Problems Involving Weak Acid Equilibria

• In a water solution of the weak acid, HA, there are two sources of H_3O^+ :

1. $HA + H_2O \leftrightarrow H_3O^+ + A^-$ (dissociation of HA)

2. $H_2O + H_2O \leftrightarrow H_3O^+ + OH^-$ (autoionization)

 \rightarrow [H₃O⁺]₁ = [A⁻] and [H₃O⁺]₂ = [OH⁻] \rightarrow [H₃O⁺] = [H₃O⁺]₁ + [H₃O⁺]₂ = [A⁻] + [OH⁻]


→If HA is not very dilute or very weak, the autoionization can be neglected and [OH⁻] << [A⁻]

 $\Rightarrow [\mathrm{H}_3\mathrm{O}^+] \approx [\mathrm{A}^-] = x$

≻Using equilibrium tables					
\rightarrow If he autoionization of water is neglected					
$[] HA + H_2O \leftrightarrow H_3O^+ + A^-$					$K_a = \frac{[\mathrm{H}_3\mathrm{O}^+][\mathrm{A}^-]}{[\mathrm{H}\mathrm{A}]}$
<i>i</i> +	i	C _{HA}	0	0	$ \begin{bmatrix} \mathbf{HA} \end{bmatrix} $
· c =	c	-x	+x	+ <i>x</i>	$K_a = \frac{x^2}{C_{HA} - x}$
= е	e	C_{HA} - x	x	x	$\int_{a}^{a} C_{HA} - x$
\rightarrow The quadratic equation can be solved for <i>x</i> in order to determine [H ₃ O ⁺] and <i>pH</i>					
→ If x is less than 5% of C_{HA} , x can be neglected in the denominator (5% rule) → works if C_{HA} is relatively large and K_a is small ($C_{HA}/K_a > 400$)					
$K_a = x^2 / C_{HA}$ $x = (K_a C_{HA})^{\frac{1}{2}} = [H_3 O^+]$					

• In water solution, the weak acid HA exists in
two forms
$$\rightarrow$$
 undissociated (HA) and
dissociated (A⁻)
HA + H₂O \leftrightarrow H₃O⁺ + A⁻
 \rightarrow C_{HA} - total concentration of HA
 \rightarrow C_{HA} = [HA] + [A⁻]
 \Rightarrow [HA] = C_{HA} - [A⁻] = C_{HA} - x
 \rightarrow So [H₃O⁺] = x, [A⁻] = x, [HA] = C_{HA} - x
 $K_a = \frac{[H_3O^+][A^-]}{[HA]} = \frac{x^2}{C_{HA} - x}$

Finding K _a Given Concentrations or pH						
Example: If t	Example: If the <i>pH</i> of a 0.20 M HCN solution is					
4.95 , calculate t	he K_a of	HCN.				
\rightarrow [H ₃ O ⁺] = 10 ^{-pH}	\rightarrow [H ₃ O ⁺] = 10 ^{-pH} = 10 ^{-4.95} = 1.1×10 ⁻⁵ = x					
$\rightarrow C_{HCN} = 0.20 \rightarrow x \ll 5\% \text{ of } C_{HCN}$						
$\begin{bmatrix} \mathbf{I} & \mathbf{HCN} + \mathbf{H}_2\mathbf{O} \leftrightarrow \mathbf{H}_3\mathbf{O}^+ + \mathbf{CN}^- \\ \mathbf{i} & 0.20 & 0 & 0 \end{bmatrix} K_a = \frac{[\mathbf{H}_3\mathbf{O}^+][\mathbf{CN}^-]}{[\mathbf{HCN}]}$						
<i>i</i> 0.20	0	0	\mathbf{H}_{a}^{-} [HCN]			
<i>c</i> - <i>x</i>	+x	+x	$K_a = \frac{x^2}{C_{HCN} - x} \approx \frac{x^2}{C_{HCN}}$			
<i>e</i> 0.20 - <i>x</i>	x	x	$\begin{bmatrix} a & C_{HCN} - x & C_{HCN} \end{bmatrix}$			
$\Rightarrow K_a = x^2 / C_{HCN} = (1.1 \times 10^{-5})^2 / 0.20 = 6.3 \times 10^{-10}$ [Note: $C_{H4} / K_a = 0.20 / 6.3 \times 10^{-10} = 3.2 \times 10^8 >> 400$]						
[Note: $C_{HA}/K_a = 0.20/6.3 \times 10^{-10} = 3.2 \times 10^8 >> 400$]						

Example: Calculate the % *dissociation* for two HF solutions with concentrations **0.30** and **3.0** M. $(K_a = 6.8 \times 10^{-4} \text{ for HF})$ \rightarrow For the **0.30** M HF from the previous example: $x = (K_a C_{HF})^{\frac{1}{2}} = (6.8 \times 10^{-4} \times 0.30)^{\frac{1}{2}} = 1.4 \times 10^{-2} = [\text{H}_3\text{O}^+]$ % *dissociated* = $(1.4 \times 10^{-2}/0.30) \times 100 = 4.8\%$ \rightarrow For the **3.0** M HF similarly: $x = (K_a C_{HF})^{\frac{1}{2}} = (6.8 \times 10^{-4} \times 3.0)^{\frac{1}{2}} = 4.5 \times 10^{-2} = [\text{H}_3\text{O}^+]$ % *dissociated* = $(4.5 \times 10^{-2}/3.0) \times 100 = 1.5\%$ \Rightarrow Increasing the concentration from 0.30 to 3.0 M decreases the % dissociated from 4.8 to 1.5\% Extent of Acid Dissociation • Percent dissociation $HA + H_2O \Leftrightarrow H_3O^+ + A^ \Rightarrow C_{HA} = [HA] + [A^-] \Rightarrow [A^-] \approx [H_3O^+]$ $\Rightarrow [A^-] = x$ (dissociated form of the acid) % dissociated = $\frac{[A^-]}{C_{HA}} \times 100 = \frac{[H_3O^+]}{C_{HA}} \times 100 = \frac{x}{C_{HA}} \times 100$ \Rightarrow For a given acid, % dissociated decreases with increasing the total concentration of the acid, C_{HA} $\uparrow C_{HA} \Leftrightarrow \downarrow \%$ dissociation

The Behavior of Polyprotic Acids • Polyprotic Acids – can donate more than one proton $(H_2SO_4, H_3PO_4, ...)$ – For a general diprotic acid, H_2A $H_2A + H_2O \leftrightarrow H_3O^+ + HA^ HA^- + H_2O \leftrightarrow H_3O^+ + A^{2-}$ K_{a2} $K_{a1} = \frac{[H_3O^+][HA^-]}{[H_2A]}$ $K_{a2} = \frac{[H_3O^+][A^{2-}]}{[HA^-]}$ \approx Almost all polyprotic acids (except H_2SO_4) are weak in all stages of dissociation and become weaker with each successive dissociation $K_{a1} > K_{a2} > K_{a3} \dots$

Name (Formula)	Lewis Structure*	K _{a1}	K _{a2}	K _{a3}
Oxalic acid (H ₂ C ₂ O ₄)	:0: :0: ШШ H—Ö—С—С—Ö—Н	5.6×10 ⁻²	5.4×10 ⁻⁵	
Phosphorous acid (H ₃ PO ₃)	:0: Ш———————————————————————————————————	3×10 ⁻²	1.7×10 ⁻⁷	
Sulfurous acid (H ₂ SO ₃)	:0: Ш н—ё— <u>\$</u> —ё—н	1.4×10^{-2}	6.5×10 ⁻⁸	
Phosphoric acid (H ₃ PO ₄)	:0: Н—ё_Р_ё_н :о́_н	7.2×10 ⁻³	6.3×10 ⁻⁸	4.2×10 ⁻¹³
Arsenic acid (H ₃ AsO ₄)	:O: H—ё—Аs—ё—н :Q—н	6×10 ⁻³	1.1×10 ⁻⁷	3×10 ⁻¹²
Carbonic acid (H ₂ CO ₃)	:0:	4.5×10^{-7}	4.7×10 ⁻¹¹	
Hydrosulfuric acid (H ₂ S)	н—зі—н	9×10 ⁻⁸	1×10 ⁻¹⁷	

	\rightarrow Consider only the first dissociation to get the <i>pH</i>						
	$H_3PO_4 + H_2O \leftarrow$	$K_{a1} = \frac{[H_3O^+][H_2PO_4^-]}{[H_3PO_4]}$					
i	0.10	0	0	$\begin{bmatrix} \mathbf{R}_{a1} - \mathbf{H}_{3} \mathbf{PO}_{4} \end{bmatrix}$			
с	- <i>x</i>	+x	+x	$K_{a1} = \frac{x^2}{0.10 - x} \approx \frac{x^2}{0.10}$			
e	0.10 - <i>x</i>	x	x	$\begin{bmatrix} \mathbf{A}_{a1} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$			
<u> </u>	\rightarrow Assume $x < 5\%$ of 0.10						
	$\Rightarrow \mathbf{x} = (K_{al} \times 0.10)^{\frac{1}{2}} = (7.2 \times 10^{-3} \times 0.10)^{\frac{1}{2}} = 2.7 \times 10^{-2}$						
<u> </u>	\rightarrow Check assumption: $(2.7 \times 10^{-2}/0.10) \times 100 = 27\% > 5\%$						
⇒The assumption is not justified – must solve the quadratic equation							
	$x^2 = K_{al}(0.10 - x)$ $x^2 + K_{al}x - 0.10K_{al} = 0$						
	$x^2 + 7.2 \times 10^{-3} x - 7.2 \times 10^{-4} = 0$						

- The second and third dissociations are less pronounced because it's harder to remove an H⁺ from negatively charged ions
- Equilibrium calculations are greatly simplified by neglecting subsequent dissociations since they contribute negligible amounts of H₃O⁺

Example: Calculate the *pH* and the concentrations of all ionized forms for a **0.10** M H₃PO₄ solution. $(K_{a1} = 7.2 \times 10^{-3}, K_{a2} = 6.3 \times 10^{-8}, K_{a3} = 4.2 \times 10^{-13})$ $H_3PO_4 + H_2O \leftrightarrow H_3O^+ + H_2PO_4^- K_{a1}$ $H_2PO_4^- + H_2O \leftrightarrow H_3O^+ + HPO_4^{-2} K_{a2}$ $HPO_4^{-2} + H_2O \leftrightarrow H_3O^+ + PO_4^{-3} K_{a3}$

$$\begin{aligned} x &= \frac{-7.2 \times 10^{-3} + \sqrt{(7.2 \times 10^{-3})^2 + 4 \times 7.2 \times 10^{-4}}}{2} = 2.3 \times 10^{-2} \\ \Rightarrow x &= [H_3O^+] = [H_2PO_4^-] = 2.3 \times 10^{-2} M \\ \Rightarrow pH &= -\log[H_3O^+] = -\log(2.3 \times 10^{-2}) = 1.63 \\ \Rightarrow \text{ To calculate the concentrations of the other species,} \\ &\text{ use the } [H_3O^+] \text{ and } [H_2PO_4^-] \text{ from the } 1^{\text{st}} \text{ ionization} \\ K_{a2} &= \frac{[H_3O^+][HPO_4^2]}{[H_2PO_4^-]} \qquad K_{a3} = \frac{[H_3O^+][PO_4^{3-}]}{[HPO_4^{2-}]} \\ [HPO_4^{2-}] &= \frac{K_{a2}[H_2PO_4^-]}{[H_3O^+]} = \frac{6.3 \times 10^{-8} \times 2.3 \times 10^{-2}}{2.3 \times 10^{-2}} = 6.3 \times 10^{-8} \\ [PO_4^{3-}] &= \frac{K_{a3}[HPO_4^{2-}]}{[H_3O^+]} = \frac{4.2 \times 10^{-13} \times 6.3 \times 10^{-8}}{2.3 \times 10^{-2}} = 1.1 \times 10^{-18} \end{aligned}$$