18.5 Solving Problems Involving Weak Base Equilibria

• In a water solution of the weak base, B, there are two sources of OH-:

1. $B + H_2O \leftrightarrow HB^+ + OH^-$ (ionization of B)

2. $H_2O + H_2O \leftrightarrow H_3O^+ + OH^-$ (autoionization)

$$\rightarrow$$
[OH⁻]₁ = [HB⁺] and [OH⁻]₂ = [H₃O⁺]
 \rightarrow [OH⁻] = [OH⁻]₁ + [OH⁻]₂ = [HB⁺] + [H₃O⁺]

 \rightarrow If B is not very dilute or very weak, the autoionization can be neglected and [H₃O⁺]<<[HB⁺]

 $\Rightarrow [\text{OH}^{-}] \approx [\text{HB}^{+}] = x$

• In water solution, the weak base B exists in
two forms
$$\rightarrow$$
 unionized (B) and ionized (HB⁺)
B + H₂O \leftrightarrow HB⁺ + OH⁻
 \rightarrow C_B - total concentration of B
 \rightarrow C_B = [B] + [HB⁺]
 \Rightarrow [B] = C_B - [HB⁺] = C_B - x
 \rightarrow So [OH⁻] = x, [HB⁺] = x, [B] = C_B - x
 $K_b = \frac{[HB^+][OH^-]}{[B]} = \frac{x^2}{C_B - x}$
 \rightarrow The equation is equivalent to that for weak acids

Anions of Weak Acids as Weak Bases

• The anion of the weak acid (HA) is its conjugate base (A⁻)

- A⁻ reacts as a weak base in water:

$$A^- + H_2O \leftrightarrow HA + OH^-$$

A⁻ can be produced in solution by means of the soluble salt, MA, which dissociates completely: MA(s) → M⁺ + A⁻ (M⁺ is a spectator ion)
Example: For an aqueous solution of KF KF(s) → K⁺ + F⁻ F⁻ + H₂O ↔ HF + OH⁻

 $K_b = \frac{[\mathrm{HA}][\mathrm{OH}^-]}{[\mathrm{A}^-]}$

Example: Calculate the % *ionization* for two NH₃ solutions with concentrations 0.10 and 1.0 M. ($K_b =$ 1.8×10⁻⁵ for NH₃) \rightarrow For the 0.10 M NH₃ from the previous example: $x = (K_b C_{NH3})^{\frac{1}{2}} = (1.8 \times 10^{-5} \times 0.10)^{\frac{1}{2}} = 1.3 \times 10^{-3} = [OH^-]$ % *ionized* = $(1.3 \times 10^{-3}/0.10) \times 100 = 1.3\%$ \rightarrow For the 1.0 M NH₃ similarly: $x = (K_b C_{NH3})^{\frac{1}{2}} = (1.8 \times 10^{-5} \times 1.0)^{\frac{1}{2}} = 4.2 \times 10^{-3} = [OH^-]$ % *ionized* = $(4.2 \times 10^{-3}/1.0) \times 100 = 0.42\%$ \Rightarrow Increasing the concentration from 0.10 to 1.0 M decreases the % *ionized* from 1.3 to 0.42\%

➢ HA and A⁻ are present in both, solutions of the weak acid HA, and solutions of its anion A⁻ Solutions of HA: HA + H₂O ↔ H₃O⁺ + A⁻ Solutions of A⁻: A⁻ + H₂O ↔ HA + OH⁻
➢ Both equilibria are shifted to the left so
➢ Solutions of HA are acidic (H₃O⁺) and [HA] >> [A⁻]
➢ Solutions of A⁻ are basic (OH⁻) and [A⁻] >> [HA]
➢ HA and A⁻ are a conjugate acid base pair so
K_a(HA)×K_b(A⁻) = K_w → K_b(A⁻) = K_w/K_a(HA)
➢ Equilibrium calculations for A⁻ are carried out using the same method as for the neutral base B
K_b = [HA][OH⁻]

18.6 Molecular Properties and Acid Strength

- **Binary acids** (H_nX) consist of H and a second element, X (HF, HCl, H₂O, H₂S, ...)
 - → Acid strength increases across a period (the *EN* of X increases → the H–X bond becomes more polar → greater δ+ charge on the H → greater attraction of the H to the O atom of H₂O) $^{\delta-}X-H^{\delta+}----:OH_2 \leftrightarrow H_3O^+ + X^-$

Example: NH₃ << H₂O < HF
➤ Acid strength increases down a group (X becomes larger → the H–X bond becomes longer and weaker → the H⁺ comes off more easily)
Example: HF << HCl < HBr < HI

Adding more *EN* atoms to the molecule increases the acidity further (Ex: CH₃COOH < CF₃COOH)

Acidity of Hydrated Metal Ions

