18.5 Solving Problems Involving Weak Base Equilibria

- In a water solution of the weak base, B , there are two sources of OH^{-}:

1. $\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HB}^{+}+\mathrm{OH}^{-}$(ionization of B)
2. $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$(autoionization)
$\rightarrow\left[\mathrm{OH}^{-}\right]_{1}=\left[\mathrm{HB}^{+}\right] \quad$ and $\quad\left[\mathrm{OH}^{-}\right]_{2}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\rightarrow\left[\mathrm{OH}^{-}\right]=\left[\mathrm{OH}^{-}\right]_{1}+\left[\mathrm{OH}^{-}\right]_{2}=\left[\mathrm{HB}^{+}\right]+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
\rightarrow If B is not very dilute or very weak, the autoionization can be neglected and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \ll\left[\mathrm{HB}^{+}\right]$

$$
\Rightarrow\left[\mathrm{OH}^{-}\right] \approx\left[\mathrm{HB}^{+}\right]=x
$$

$>$ Using equilibrium tables
\rightarrow If he autoionization of water is neglected

			B +	HB	OH^{-}	$K_{b}=\frac{\left[\mathrm{HB}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}$	
$\stackrel{+}{+}$	i		C_{B}	0	0		
3	c		-x	+x	+ \times		x^{2}
0	e		$C_{B}-x$	x	x		$C_{B}-x$

\rightarrow The quadratic equation can be solved for x in order to determine $\left[\mathrm{OH}^{-}\right], \boldsymbol{p O H}$ and $\boldsymbol{p H}$
\rightarrow If \boldsymbol{x} is less than 5% of $\boldsymbol{C}_{\boldsymbol{B}}, \boldsymbol{x}$ can be neglected in the denominator (5% rule) \rightarrow works if \boldsymbol{C}_{B} is relatively large and $\boldsymbol{K}_{\boldsymbol{b}}$ is small $\left(\boldsymbol{C}_{\boldsymbol{B}} / \boldsymbol{K}_{\boldsymbol{b}}>400\right)$

$$
K_{b}=x^{2} / C_{B} \quad x=\left(K_{b} C_{B}\right)^{1 / 2}=\left[\mathrm{OH}^{-}\right]
$$

- In water solution, the weak base B exists in two forms \rightarrow unionized (B) and ionized $\left(\mathrm{HB}^{+}\right)$

$$
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HB}^{+}+\mathrm{OH}^{-}
$$

$\rightarrow \boldsymbol{C}_{\boldsymbol{B}}$ - total concentration of B
$\rightarrow C_{B}=[\mathrm{B}]+\left[\mathrm{HB}^{+}\right]$

$$
\Rightarrow[\mathrm{B}]=C_{B}-\left[\mathrm{HB}^{+}\right]=C_{B}-x
$$

$\rightarrow \mathrm{So}\left[\mathrm{OH}^{-}\right]=\boldsymbol{x},\left[\mathrm{HB}^{+}\right]=\boldsymbol{x},[\mathrm{B}]=C_{B}-\boldsymbol{x}$

$$
K_{b}=\frac{\left[\mathrm{HB}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}=\frac{x^{2}}{C_{B}-x}
$$

The equation is equivalent to that for weak acids

Finding $\boldsymbol{p H}$ Given $\boldsymbol{K}_{\boldsymbol{b}}$

Example: What is the $\boldsymbol{p} \boldsymbol{H}$ of a $\mathbf{0 . 1 0} \mathrm{M} \mathrm{NH}_{3}$ solution? $\left(\boldsymbol{K}_{\boldsymbol{b}}=\mathbf{1 . 8} \times \mathbf{1 0}^{-5}\right.$ for $\left.\mathbf{N H}_{3}\right)$

[]	$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$			$\boldsymbol{K}_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}$
\boldsymbol{i}	0.10	0	0	
c	$-x$	+ \times	$+x$	$K_{L}=\boldsymbol{x}^{2}$
e	0.10-x	x	x	$\boldsymbol{K}_{b}=\frac{x^{2}}{C_{N H_{3}}-\boldsymbol{x}}$
$\rightarrow \boldsymbol{C}_{\text {NH3 }}=0.10 \rightarrow$ assume $\boldsymbol{x}<5 \%$ of $\mathbf{0 . 1 0}$				
$\Rightarrow \boldsymbol{x}=\left(K_{b} C_{N H 3}\right)^{1 / 2}=\left(1.8 \times 10^{-5} \times 0.10\right)^{1 / 2}=1.3 \times 10^{-3}=\left[\mathrm{OH}^{-}\right]$				
$\Rightarrow \boldsymbol{p O H}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(1.3 \times 10^{-3}\right)=2.87$				
$\Rightarrow \boldsymbol{p} \boldsymbol{H}=14.00-\boldsymbol{p O H}=14.00-2.87=\mathbf{1 1 . 1 3}$				
[Check assumption: $\left(1.3 \times 10^{-3 /} 0.10\right) \times 100=1.3 \%<5 \%$]				

Extent of Base Ionization

- Percent ionization

$$
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HB}^{+}+\mathrm{OH}^{-}
$$

$\rightarrow \boldsymbol{C}_{\boldsymbol{B}}=[\mathrm{B}]+\left[\mathrm{HB}^{+}\right] \quad \rightarrow \quad\left[\mathrm{HB}^{+}\right] \approx\left[\mathrm{OH}^{-}\right]$
$\rightarrow\left[\mathrm{HB}^{+}\right]=\boldsymbol{x}$ (ionized form of the base)
$\%$ ionized $=\frac{\left[\mathrm{HB}^{+}\right]}{C_{B}} \times 100=\frac{\left[\mathrm{OH}^{-}\right]}{C_{B}} \times 100=\frac{x}{C_{B}} \times 100$
$>$ For a given base, \% ionized decreases with increasing the total concentration of the base, \boldsymbol{C}_{B}

$$
\uparrow C_{B} \Leftrightarrow \downarrow \% \text { dissociation }
$$

Anions of Weak Acids as Weak Bases

- The anion of the weak acid (HA) is its conjugate base (A^{-})
- A^{-}reacts as a weak base in water:

$$
\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HA}+\mathrm{OH}^{-} \quad \boldsymbol{K}_{b}=\frac{[\mathbf{H A}]\left[\mathbf{O H}^{-}\right]}{\left[\mathbf{A}^{-}\right]}
$$

- A- can be produced in solution by means of the soluble salt, MA, which dissociates completely: $\mathrm{MA}(\mathrm{s}) \rightarrow \mathrm{M}^{+}+\mathrm{A}^{-} \quad\left(\mathrm{M}^{+}\right.$is a spectator ion $)$
Example: For an aqueous solution of KF

$$
\begin{gathered}
\mathrm{KF}(\mathrm{~s}) \rightarrow \mathrm{K}^{+}+\mathrm{F}^{-} \\
\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HF}+\mathrm{OH}^{-} \\
\hline
\end{gathered}
$$

Example: Calculate the \% ionization for two NH_{3} solutions with concentrations $\mathbf{0 . 1 0}$ and $\mathbf{1 . 0} \mathrm{M}$. ($\boldsymbol{K}_{b}=$ $\mathbf{1 . 8} \times \mathbf{1 0}^{-5}$ for $\mathbf{N H}_{3}$)
\rightarrow For the $\mathbf{0 . 1 0} \mathbf{M ~ N H}_{3}$ from the previous example:
$\boldsymbol{x}=\left(K_{b} C_{N H 3}\right)^{1 / 2}=\left(1.8 \times 10^{-5} \times 0.10\right)^{1 / 2}=1.3 \times 10^{-3}=\left[\mathrm{OH}^{-}\right]$
\% ionized $=\left(1.3 \times 10^{-3} / 0.10\right) \times 100=\mathbf{1 . 3} \%$
\rightarrow For the $\mathbf{1 . 0} \mathrm{M} \mathrm{NH}_{3}$ similarly:
$\boldsymbol{x}=\left(K_{b} C_{N H 3}\right)^{1 / 2}=\left(1.8 \times 10^{-5} \times 1.0\right)^{1 / 2}=4.2 \times 10^{-3}=\left[\mathrm{OH}^{-}\right]$
\% ionized $=\left(4.2 \times 10^{-3} / 1.0\right) \times 100=\mathbf{0 . 4 2 \%}$
\Rightarrow Increasing the concentration from 0.10 to 1.0 M
decreases the $\%$ ionized from 1.3 to 0.42%
$>$ HA and A^{-}are present in both, solutions of the weak acid HA, and solutions of its anion A^{-}
Solutions of HA: $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$
Solutions of $\mathrm{A}^{-}: \quad \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HA}+\mathrm{OH}^{-}$
$>$ Both equilibria are shifted to the left so
$>$ Solutions of HA are acidic $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$and $[\mathrm{HA}] \gg\left[\mathrm{A}^{-}\right]$
$>$ Solutions of A- are basic $\left(\mathrm{OH}^{-}\right)$and $\left[\mathrm{A}^{-}\right] \gg$ [HA]
$>$ HA and A^{-}are a conjugate acid base pair so
$\boldsymbol{K}_{\boldsymbol{a}}(\mathrm{HA}) \times \boldsymbol{K}_{\boldsymbol{b}}\left(\mathrm{A}^{-}\right)=\boldsymbol{K}_{\boldsymbol{w}} \quad \rightarrow \quad \boldsymbol{K}_{\boldsymbol{b}}\left(\mathrm{A}^{-}\right)=\boldsymbol{K}_{\boldsymbol{w}} / \boldsymbol{K}_{\boldsymbol{a}}(\mathrm{HA})$
$>$ Equilibrium calculations for A^{-}are carried out using the same method as for the neutral base B

$$
K_{b}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}=\frac{x^{2}}{C_{A^{-}}-x}
$$

Example: What is the $\boldsymbol{p H}$ of a $\mathbf{0 . 1 0} \mathrm{M} \mathrm{KF}$ solution? $\left(K_{a}=6.8 \times 10^{-4}\right.$ for HF)

$\rightarrow \mathrm{KF}(\mathrm{s}) \rightarrow \mathrm{K}^{+}+\mathrm{F}^{-} \quad \rightarrow \boldsymbol{C}_{\boldsymbol{F}^{-}}=\mathbf{0 . 1 0} \mathrm{M}$				
[]	$\mathbf{F}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HF}+\mathrm{OH}^{-}$			$K_{b}=\frac{[\mathrm{HF}]\left[\mathrm{OH}^{-}\right.}{}$
i	0.10	0	0	
c	-x	+x	+ \times	${ }^{2}$
e	0.10-x	x	x	0.10-x 0.10

$\rightarrow \boldsymbol{K}_{b}(\mathrm{~F})=\boldsymbol{K}_{\boldsymbol{w}} / \boldsymbol{K}_{a}(\mathrm{HF})=1.0 \times 10^{-14} / 6.8 \times 10^{-4}=1.5 \times 10^{-11}$
$\Rightarrow \boldsymbol{x}=\left(K_{b} \times 0.10\right)^{1 / 2}=\left(1.5 \times 10^{-11} \times 0.10\right)^{1 / 2}=1.2 \times 10^{-6}=\left[\mathrm{OH}^{-}\right]$
$\Rightarrow \boldsymbol{p O H}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(1.2 \times 10^{-6}\right)=5.92$
$\Rightarrow \boldsymbol{p H}=14.00-\boldsymbol{p O H}=14.00-5.92=\mathbf{8 . 0 8} \quad$ (basic)
[Check assumption: $\left(1.2 \times 10^{-6} / 0.10\right) \times 100=0.0012 \%<5 \%$]

Example: What is the $\boldsymbol{p} \boldsymbol{H}$ of a $\mathbf{0 . 1 0} \mathrm{M} \mathrm{NH}_{4} \mathrm{I}$ solution? $\left(\boldsymbol{K}_{\boldsymbol{b}}=\mathbf{1 . 8} \times \mathbf{1 0}^{-5}\right.$ for $\left.\mathrm{NH}_{3}\right)$
$\rightarrow \mathrm{NH}_{4} \mathrm{I}(\mathrm{s}) \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{I}^{-} \quad \rightarrow \boldsymbol{C}_{\mathrm{NH}^{+}}=\mathbf{0 . 1 0} \mathbf{~ M}$

[]	$\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{3}$			$K_{a}=\frac{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]\left[\mathbf{N H}_{3}\right]}{\left[\mathbf{N H}_{4}{ }^{+}\right]}$
i	0.10	0	0	
c	-x	+ \times	$+x$	${ }^{2}$
e	0.10-x	x	x	$\frac{x^{2}}{\mathbf{0 . 1 0 - x}} \approx \frac{x^{2}}{\mathbf{0 . 1 0}}$

$\boldsymbol{K}_{\boldsymbol{a}}\left(\mathrm{NH}_{4}^{+}\right)=\boldsymbol{K}_{\boldsymbol{w}} / \boldsymbol{K}_{\boldsymbol{b}}\left(\mathrm{NH}_{3}\right)=1.0 \times 10^{-14} / 1.8 \times 10^{-5}=5.6 \times 10^{-10}$
$\Rightarrow \boldsymbol{x}=\left(K_{a} \times 0.10\right)^{1 / 2}=\left(5.6 \times 10^{-10} \times 0.10\right)^{1 / 2}=7.5 \times 10^{-6}$
$\Rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=7.5 \times 10^{-6} \mathrm{M}$
$\Rightarrow \boldsymbol{p} \boldsymbol{H}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(7.5 \times 10^{-6}\right)=\mathbf{5 . 1 3}$ (acidic)
[Check assumption: $\left(7.5 \times 10^{-6} / 0.10\right) \times 100=0.0075 \%<5 \%$]

Cations of Weak Bases as Weak Acids

- The cation of the weak base (B) is its conjugate acid (HB^{+})
$-\mathrm{HB}^{+}$reacts as a weak acid in water:

$$
\mathrm{HB}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{B} \quad \boldsymbol{K}_{a}=\frac{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right][\mathbf{B}]}{\left[\mathbf{H B}^{+}\right]}
$$

$>\mathrm{HB}^{+}$and B are a conjugate acid-base pair so

$$
\boldsymbol{K}_{\boldsymbol{a}}\left(\mathrm{HB}^{+}\right) \times \boldsymbol{K}_{\boldsymbol{b}}(\mathrm{B})=\boldsymbol{K}_{\boldsymbol{w}} \quad \rightarrow \quad \boldsymbol{K}_{\boldsymbol{a}}\left(\mathrm{HB}^{+}\right)=\boldsymbol{K}_{\boldsymbol{w}} / \boldsymbol{K}_{\boldsymbol{b}}(\mathrm{B})
$$

$>$ Equilibrium calculations for HB^{+}are carried out using the same method as for the neutral acid HA

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{B}]}{\left[\mathrm{HB}^{+}\right]}=\frac{x^{2}}{C_{H B^{+}}-x}
$$

18.6 Molecular Properties and Acid Strength

- Binary acids $\left(\mathrm{H}_{\mathrm{n}} \mathrm{X}\right)$ - consist of H and a second element, $\mathrm{X}\left(\mathrm{HF}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \ldots\right)$
$>$ Acid strength increases across a period (the $\boldsymbol{E N}$ of X increases \rightarrow the $\mathrm{H}-\mathrm{X}$ bond becomes more polar \rightarrow greater $\delta+$ charge on the $\mathrm{H} \rightarrow$ greater attraction of the H to the O atom of $\mathrm{H}_{2} \mathrm{O}$)

$$
{ }^{\delta-\mathrm{X}-\mathrm{H}^{\delta+}----:}: \mathrm{OH}_{2} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{X}^{-}
$$

Example: $\mathrm{NH}_{3} \ll \mathrm{H}_{2} \mathrm{O}<\mathrm{HF}$
$>$ Acid strength increases down a group (X becomes larger \rightarrow the $\mathrm{H}-\mathrm{X}$ bond becomes longer and weaker \rightarrow the H^{+}comes off more easily)
Example: $\mathrm{HF} \ll \mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$

- Oxoacids $\left(\mathrm{H}_{\mathrm{n}} \mathrm{XO}_{\mathrm{m}}\right)$ - consist of H, O and a third element, $\mathrm{X}\left(\mathrm{HClO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}, \ldots\right)$
- The acidic H atoms are attached to O atoms
$>$ For oxoacids with the same \# of O atoms, acid strength increases with increasing the $E N$ of X (X withdraws electron density from the $\mathrm{O}-\mathrm{H}$ bond and makes it more polar \rightarrow greater $\delta+$ charge on the $\mathrm{H} \rightarrow$ the H^{+}comes off more easily)
Example: $\mathrm{HOI}<\mathrm{HOBr}<\mathrm{HOCl}$

$>$ For oxoacids having the same X , acid strength increases with increasing the \# of O atoms (the high $\boldsymbol{E N}$ of O draws electron density from the $\mathrm{O}-\mathrm{H}$ bond and makes it more polar \rightarrow greater $\delta+$ charge on the $\mathrm{H} \rightarrow$ the H^{+}comes off more easily)
Example: $\mathrm{HClO}<\mathrm{HClO}_{2} \ll \mathrm{HClO}_{3}<\mathrm{HClO}_{4}$

$>$ Adding more $\boldsymbol{E N}$ atoms to the molecule increases the acidity further $\left(\mathbf{E x}: \mathrm{CH}_{3} \mathrm{COOH}<\mathrm{CF}_{3} \mathrm{COOH}\right)$

Acidity of Hydrated Metal Ions

- Metal ions are hydrated in water solutions
- If the ion is small and highly charged (M^{2+} or $\left.\mathrm{M}^{3+}\right)$, it draws electron density from the bound water molecules $\rightarrow \mathrm{H}^{+}$can be released \rightarrow acidic
Example: $\mathrm{AlCl}_{3}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+3 \mathrm{Cl}^{-}$

$$
\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

