18.7 Acid-Base Properties of Salt Solutions

- The acidity (basicity) of salt solutions depends on the acid-base properties of their ions
- Acidic cations act as weak acids in water
 - The cations (conjugate acids) of weak bases $(NH_4^+, CH_3NH_2^+, ...) \rightarrow act$ as weak acids
 - Small, highly charged metal cations (Al³⁺, Fe³⁺, Cr³⁺, Cu²⁺, ...) \rightarrow act as weak acids
- Neutral cations do not influence the *pH*
 - The cations of strong bases (Group I, Ca²⁺, Sr²⁺, Ba²⁺) and metal cations with +1 charge (Ag⁺, Cu⁺, ...) are extremely weak acids (weaker than H₂O) \rightarrow do not influence the *pH*

Salts of neutral cations and neutral anions yield neutral solutions

Example: NaCl(s) \rightarrow Na⁺ + Cl⁻ (neutral solution) Na⁺ \rightarrow neutral cation (cation of a strong base, NaOH) Cl⁻ \rightarrow neutral anion (anion of a strong acid, HCl)

Salts of acidic cations and neutral anions yield acidic solutions

Example: $NH_4Cl(s) \rightarrow NH_4^+ + Cl^-$ (acidic solution) $NH_4^+ \rightarrow$ acidic cation (cation of a weak base, NH_3) $Cl^- \rightarrow$ neutral anion (anion of a strong acid, HCl) $NH_4^+ + H_2O \leftrightarrow H_3O^+ + NH_3$

- Basic anions act as weak bases in water
 - The anions (conjugate bases) of weak acids (F⁻, CN⁻, S²⁻, PO₄³⁻...) → act as weak bases
- Neutral anions do not influence the *pH*
 - The anions (conjugate bases) of strong acids (Cl⁻, Br⁻, I⁻, NO₃⁻, ClO₄⁻...) are extremely weak bases (weaker than H₂O) \rightarrow do not influence the *pH*
- Amphoteric anions of polyprotic acids can act as weak acids or bases in water
 - Anions with ionizable protons $(H_2PO_4^-, HPO_4^{-2}, HS^-, HSO_3^-, HSO_4^-) \rightarrow act as either weak acids or weak bases depending on the relative values of their <math>K_a$ and K_b constants)

Example: $FeCl_3(s) \rightarrow Fe^{3+} + 3Cl^-$ (acidic solution) $Fe^{3+} \rightarrow$ acidic cation (highly charged, small cation) $Cl^- \rightarrow$ neutral anion (anion of a strong acid, HCl) $Fe(H_2O)_6^{3+} + H_2O \leftrightarrow H_3O^+ + Fe(H_2O)_5OH^{2+}$

Salts of **neutral cations** and **basic anions** yield **basic solutions**

Example: $Na_2S(s) \rightarrow 2Na^+ + S^{2-}$ (basic solution)

- $Na^+ \rightarrow$ neutral cation (cation of a strong base, NaOH)
- $S^{2-} \rightarrow$ basic anion (anion of a weak acid, H₂S)

 $S^{2-} + H_2O \leftrightarrow HS^- + OH^-$

Example: $KF(s) \rightarrow K^+ + F^-$ (basic solution) $K^+ \rightarrow$ neutral cation $F^- \rightarrow$ basic anion

Salts of acidic cations and basic anions yield either acidic or basic solutions		
> If K_a of the cation is larger than K_b of the anion, the solution is acidic (cation is a stronger acid)		
> If K_a of the cation is smaller than K_b of the anion, the solution is basic (anion is a stronger base)		
Example: $NH_4F(s) \rightarrow NH_4^+ + F^-$		
$NH_4^+ \rightarrow$ acidic cation (cation of a weak base, NH ₃) $F^- \rightarrow$ basic anion (anion of a weak acid, HF)		
$\mathbf{NH_4^+} + \mathbf{H_2O} \leftrightarrow \mathbf{H_3O^+} + \mathbf{NH_3} \qquad \mathbf{K_a(\mathbf{NH_4^+})} = 5.7 \times 10^{-10}$		
$F^- + H_2O \leftrightarrow HF + OH^ K_b(F^-) = 1.5 \times 10^{-11}$		
$K_a(NH_4^+) > K_b(F^-) \implies NH_4^+$ is a stronger acid than F- is a base \implies the solution is slightly acidic		

 $K_{a}(H_{2}PO_{4}^{-}) = K_{a2}(H_{3}PO_{4}) = 6.3 \times 10^{-8}$ $K_{b}(H_{2}PO_{4}^{-}) = K_{w}/K_{a1}(H_{3}PO_{4}) = 10^{-14}/7.2 \times 10^{-3} = 1.4 \times 10^{-12}$ $K_{a}(H_{2}PO_{4}^{-}) \gg K_{b}(H_{2}PO_{4}^{-}) \Rightarrow H_{2}PO_{4}^{-} \text{ is a stronger}$ acid than it is a base \Rightarrow the solution is **acidic** $K_{2}HPO_{4} \rightarrow 2K^{+} + HPO_{4}^{2-}$ $HPO_{4}^{2-} \rightarrow \text{amphoteric anion } ???$ $HPO_{4}^{2-} + H_{2}O \leftrightarrow H_{3}O^{+} + PO_{4}^{3-} K_{a}(HPO_{4}^{2-})$ $HPO_{4}^{2-} + H_{2}O \leftrightarrow H_{2}PO_{4}^{-} + OH^{-} K_{b}(HPO_{4}^{2-})$ $K_{a}(HPO_{4}^{2-}) = K_{a3}(H_{3}PO_{4}) = 4.2 \times 10^{-13}$ $K_{b}(HPO_{4}^{2-}) = K_{w}/K_{a2}(H_{3}PO_{4}) = 10^{-14}/6.3 \times 10^{-8} = 1.6 \times 10^{-7}$ $K_{a}(HPO_{4}^{2-}) < K_{b}(HPO_{4}^{2-}) \Rightarrow HPO_{4}^{2-} \text{ is a stronger}$ base than it is an acid \Rightarrow the solution is **basic**

Salts of neutral cations and amphoteric anions yield either acidic or basic solutions		
> If K_a of the anion is larger than it solution is acidic (the anion is a s	s <i>K_b</i> , the tronger acid)	
> If K_a of the anion is smaller than its K_b , the solution is basic (the anion is a stronger base)		
Example: Predict whether solutions of KH_2PO_4 and K_2HPO_4 are acidic, basic or neutral.		
$\mathrm{KH}_{2}\mathrm{PO}_{4} \rightarrow \mathrm{K}^{+} + \mathrm{H}_{2}\mathrm{PO}_{4}^{-}$		
K^+ → neutral cation (cation of a stree $H_2PO_4^-$ → amphoteric anion ???	ong base, KOH)	
$H_2PO_4^- + H_2O \leftrightarrow H_3O^+ + HPO_4^{2-}$	$K_a(H_2PO_4^-)$	
$H_2PO_4^- + H_2O \leftrightarrow H_3PO_4 + OH^-$	$K_b(\mathrm{H}_2\mathrm{PO}_4^-)$	

18.8 The Lewis Acid-Base Definition

- Acids electron pair acceptors
- Bases electron pair donors
- The Lewis acid-base definition does not require the exchange of a proton (Lewis acids don't have to have H in their formulas)
 - Expands the scope of possible acids
 - H⁺ itself is a Lewis acid since it accepts an e⁻ pair from a base (H⁺√+):B ↔ H−B⁺)
 ⇒ All B-L acids donate a Lewis acid (H⁺)
 - \rightarrow All B-L acids donate a Lewis acid (H)
- Lewis bases must contain an e⁻ pair to donate
- Lewis acids must have a vacant orbital in order to accept the e⁻ pair from the base

- Many metals act as Lewis acids in biomolecules (Fe in hemoglobin, Mg in chlorophyll, ...)
- The Lewis definition has the widest scope of the three acid-base definitions, while the Arrhenius definition has the narrowest scope **Examples:**

	$BF_3 + :F \leftrightarrow BF_4$		
Lewis \rightarrow	acid base	adduct	
	H ⁺		
	$:\tilde{F}^{-} + \tilde{H}_{2}O \leftrightarrow HI$	$F + OH^{-}$	
B-L \rightarrow	base acid aci	d base	

