Ionic Equilibria in Aqueous Systems

19.1 Acid-Base Buffers

Resist changes in *pH* upon addition of acids (H⁺) or bases (OH⁻)

The Buffer Action

- Buffer solutions consist of to components
 - Acid component reacts with added bases (OH-)
 - Base component reacts with added acids $(\mathrm{H^{+}})$
 - The two components must be a conjugate acidbase pair
 - The two components must be present in high concentrations

> Weak acid buffer – a solution of the weak acid, HA, and its conjugate base, A⁻ (HF/F⁻, ...)
> Add H₃O⁺ (acid) → (A⁻ consumes the added H₃O⁺) H₃O⁺ + A⁻ → H₂O + HA
> Add OH⁻ (base) → (HA consumes the added OH⁻) OH⁻ + HA → H₂O + A⁻
> Weak base buffer – a solution of the weak base, B, and its conjugate acid, HB⁺ (NH₄⁺/NH₃, ...)
> Add H₃O⁺ (acid) → (B consumes the added H₃O⁺) H₃O⁺ + B → H₂O + HB⁺
> Add OH⁻ (base) → (HB⁺ consumes the added OH⁻) OH⁻ + HB⁺ → H₂O + B
⇒ The addition of H₃O⁺ and OH⁻ changes the relative amounts of the buffer components (HA/A⁻ or HB⁺/B)

The *pH* of a Buffer

For a weak acid buffer (HA/A⁻), A⁻ can be supplied in solution by means of the salt, MA MA → M⁺ + A⁻
HA and A⁻ reach equilibrium HA + H₂O ↔ H₃O⁺ + A⁻
K_a = [H₃O⁺][A⁻] ⇒ [H₃O⁺] = K_a [HA] [A⁻]
The [H₃O⁺] and *pH* depend on the ratio [HA]/[A⁻]
→If [HA] and [A⁻] are relatively large, adding small amounts of H₃O⁺ or OH⁻ changes the ratio only slightly, so [H₃O⁺] ≈ constant

• Both HA and A⁻ react with water 1. HA + H₂O \leftrightarrow H₃O⁺ + A⁻ 2. A⁻ + H₂O \leftrightarrow OH⁻ + HA \rightarrow Both equilibria are shifted to the left, so the amounts of HA and A⁻ produced are often very small compared to the total concentrations, C_{HA} and C_{A^-} \Rightarrow Assume that [HA]₂ and [A⁻]₁ << C_{HA} and C_{A^-} [HA] = $C_{HA} - [A^-]_1 + [HA]_2 \approx C_{HA} = C_a$ [A⁻] = $C_{A^-} - [HA]_2 + [A^-]_1 \approx C_{A^-} = C_b$ $\rightarrow C_a$ and C_b - total concentrations of the acid and base components of the buffer [H₃O⁺] = $K_a \frac{[HA]}{[A^-]} \Rightarrow [H_3O^+] = K_a \frac{C_a}{C_b}$

→ Take a -log() of
$$[H_3O^+] = K_a(C_a/C_b)$$

 $-\log[H_3O^+] = -\log K_a - \log \frac{C_a}{C_b} = -\log K_a + \log \frac{C_b}{C_a}$
 $\Rightarrow pH = pK_a + \log \frac{C_b}{C_a}$ Henderson-Hasselbalch
Equation
→ The equation is valid only if C_a and C_b are large
enough so that the assumptions $[HA] \approx C_a$ and $[A^-]$
 $\approx C_b$ are justified; If not, $[HA]$ and $[A^-]$ must be used
 \rightarrow Works if $C_a > 100 \times K_a$ and $C_b > 100 \times K_b$
 \rightarrow If $C_a = C_b$, $\log(C_a/C_b) = 0$ and $pH = pK_a$
 \Rightarrow If C_a and C_b are comparable, the pH of the buffer
is close to the pK_a of the acid component

Example: For **1.0** L of the same buffer, calculate the *pH* after the addition of **5.0** mL **2.0** M HCl.

- \rightarrow HCl is a strong acid and converts to H₃O⁺ which reacts with F⁻ from the buffer
- \rightarrow Calculate the starting moles of HF and F⁻ in the buffer and the added moles of H₃O⁺ from HCl
- HF \rightarrow 1.0 L × 0.50 mol/L = **0.50 mol**
- $F^- \rightarrow 1.0 \text{ L} \times 0.50 \text{ mol/L} = 0.50 \text{ mol}$
- $\mathrm{H_{3}O^{+}} \longrightarrow 0.0050 \ \mathrm{L} \times 2.0 \ \mathrm{mol/L} = 0.010 \ \mathrm{mol}$
- →Use an *"srf"* table (*starting, reacted, final*) to calculate the final moles of HF and F⁻

	Example: What is the <i>pH</i> of a buffer that is 0.50 M in HF and 0.50 M in KF? ($K_a = 6.8 \times 10^{-4}$ for HF)										
1.	Use the HendHass. Eq. (HF – acid; F ⁻ – base)										
	$C_a = 0.50$ $C_b = 0.50$										
$pH = pK_a + \log(0.50/0.50) = pK_a + \log(1) = pK_a + 0$											
$pH = pK_a = -\log(6.8 \times 10^{-4}) = 3.17$											
2. Or use an ice table											
	$[HF + H_2O \leftrightarrow H_3O^+ + F^-] \mathbf{K}_{-} = \frac{[H_3O^+][F^-]}{\mathbf{K}_{-}} =$										
i	0.50	0	0.50	" [HF]]						
c	- <i>x</i>	+x	+x	$\frac{x(0.50+x)}{2} \approx$	x(0.50)						
e	0.50 - <i>x</i>	x	0.50 + x	(0.50-x)	(0.50)						
$\boldsymbol{x} = \boldsymbol{K}_{\boldsymbol{a}} = 6.8 \times 10^{-4} = [\mathrm{H}_{3}\mathrm{O}^{+}] \Longrightarrow \boldsymbol{pH} = -\log(6.8 \times 10^{-4}) = 3.17$											

		[]	F- + H							
	S	s	0.50	0.010	_	0.50				
	loi	r	-0.010	-0.010	_	+0.010				
	W	f	0.49	0.00	_	0.51				
\rightarrow Use the HendHass. Eq. (HF – acid; F ⁻ – base)										
\rightarrow Since the acid an base components of the buffer are in										
the same volume, the ratio of the concentrations is the										
same as the ratio of the moles $\rightarrow C_b/C_a = n_b/n_a$										
$n_{H-n_{k}} = n_{b-1} = \log(6.8 \times 10^{-4}) + \log 0.49$										
$p_{II} - p_{R_a} + \log \frac{1}{n_a} = -\log(0.3 \times 10^{-1}) + \log \frac{1}{0.51}$										
= 3.17 + (-0.02) = 3.15										
⇒ The <i>pH</i> is reduced by only 0.02 <i>pH</i> -units										

Preparing Buffers

- Choose the conjugate acid-base pair (select a pair with an acid component having pK_a close to the desired buffer pH)
- Calculate the ratio of C_b/C_a needed to achieve the desired buffer *pH* (use the Hend.-Hass. Eq.)
- Determine the buffer concentration and the amounts of the two components to be mixed
- Mix the components and adjust the pH (final pH may be slightly off and can be adjusted by adding strong acid or base)
- ➢ Buffers can also be prepared by partial neutralization of weak acids (or bases) with strong bases (or acids) (Ex: HF + KOH → KF + H₂O; If only half of the HF is converted to KF → buffer)

Example: How many moles of NH₄Cl must be added to 1.0 L of 0.20 M NH₃ solution to get a buffer with pH = 9.35? ($K_b = 1.8 \times 10^{-5}$ for NH₃) \rightarrow Conjugate pair NH₄⁺/NH₃ $\rightarrow K_a = K_w/K_b = 10^{-14}/1.8 \times 10^{-5} = 5.6 \times 10^{-10}$ $\rightarrow pK_a = -\log(5.6 \times 10^{-10}) = 9.25$ $\rightarrow n_b = 1.0 L \times 0.20 \text{ mol/L} = 0.20 \text{ mol NH}_3$ $n_a = ??$ $pH = pK_a + \log \frac{n_b}{n_a} \rightarrow 9.35 = 9.25 + \log \frac{0.20}{n_a}$ $\rightarrow 0.10 = \log(0.20/n_a) \rightarrow 10^{0.10} = 0.20/n_a$ $\rightarrow n_a = 0.20/10^{0.10} = 0.16 \text{ mol NH}_4^+ = 0.16 \text{ mol NH}_4\text{Cl}$