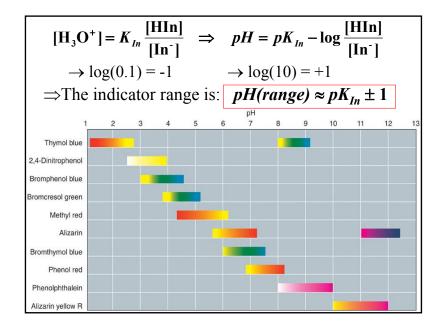
19.2 Acid-Base Titration Curves

- **Titration curves** plots of *pH* versus the volume of titrant added during titration
- Equivalence point (E) a point along the course of the titration at which the acid and the base are present in equivalent (stoichiometric) amounts and consume each other completely
 - Typically, the *pH* changes sharply at the E-point and this fact is used in the detection of the E-point
 - The titration is actually stopped at the **end point**
 - Ideally, the end point should be at the equivalence point, but in practice they can differ slightly due to imperfect detection of the E-point


Acid-Base Indicators

- Indicators used to estimate the *pH* of solutions and to detect the E-point in titrations
 - Weak organic acids with general formula HIn
 - Exhibit different colors at different pH values
 - The colors are quite intense so only small amounts are needed for detection
- **Indicator rage** a relatively narrow *pH* range over which the indicator changes color
 - If the E-point is within (or close to) the indicator range, the indicator changes color very close to E
 - \Rightarrow The *pH* at the E-point must be known for the proper selection of an indicator

- The indicator is a weak B-L acid $\frac{\text{HIn} + \text{H}_2\text{O} \leftrightarrow \text{H}_3\text{O}^+ + \text{In}^-}{\text{HIn}^-}$
 - The acid form of the indicator, HIn, and its conjugate base, In⁻, have different colors
 - If [HIn]/[In-] > 10, the solution has the color of the acid form, HIn
 - If [HIn]/[In⁻] < 0.1, the solution has the color of the base form, In⁻
 - \Rightarrow The color change is within 0.1 < [HIn]/[In⁻] < 10

$$K_{In} = \frac{[\mathbf{H}_{3}\mathbf{O}^{+}][\mathbf{In}^{-}]}{[\mathbf{HIn}]} \implies \frac{[\mathbf{HIn}]}{[\mathbf{In}^{-}]} = \frac{[\mathbf{H}_{3}\mathbf{O}^{+}]}{K_{In}}$$

$$\Rightarrow \text{The ratio [\mathbf{HIn}]/[\mathbf{In}^{-}] depends on [\mathbf{H}_{3}\mathbf{O}^{+}]}$$

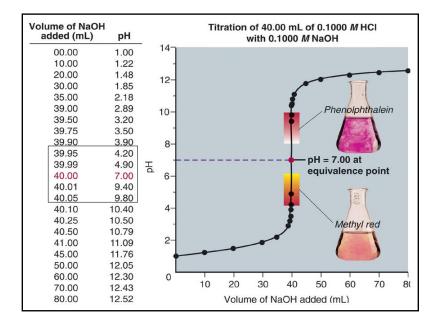
Strong Acid-Strong Base Titration Curves

➤ Strong acids and bases are completely converted to H₃O⁺ and OH⁻ in water solns.
 ⇒ The net ionic equation of the titration is:

 $H_3O^+ + OH^- \rightarrow 2H_2O$

- \Rightarrow At the E-point, *pH* = 7.00 (neutral)
- > To calculate the *pH* during the titration:
- 1. Calculate the **mmol of H_3O^+** from the acid
- 2. Calculate the **mmol of OH**⁻ from the base
- 3. Calculate the **excess mmol of H₃O⁺ or OH**⁻ from the difference between (1) and (2)
- 4. Calculate $[\mathbf{H}_{3}\mathbf{O}^{+}]$ or $[\mathbf{OH}^{-}]$ from the excess and the total volume of the solution $(V_{tot}) \rightarrow$ convert to pH

Example: Calculate the *pH* during the titration of **40.0 mL 0.100 M** HCl with **0.100 M** NaOH after the addition of **25.0 mL** NaOH.


 $0.100 \text{ M HCl} \rightarrow 0.100 \text{ M H}_3\text{O}^+ = 0.100 \text{ mmol/mL}$

 $0.100 \text{ M NaOH} \rightarrow 0.100 \text{ M OH} = 0.100 \text{ mmol/mL}$

- 1. $H_3O^+ \rightarrow 40.0 \text{ mL} \times 0.100 \text{ mmol/mL} = 4.00 \text{ mmol}$
- 2. **OH**⁻ \rightarrow 25.0 mL \times 0.100 mmol/mL = **2.50 mmol**
- 3. Excess acid = $4.00 2.50 = 1.50 \text{ mmol } H_3O^+$
- 4. $V_{tot} = 40.0 + 25.0 = 65.0 \text{ mL}$

 $1.50 \text{ mmol} / 65.0 \text{ mL} = 0.0231 \text{ M H}_3\text{O}^+$

 $pH = -\log(0.0231) = 1.64$ (acidic, before E-point)

- A titration curve for the titration of a strong base with a strong acid looks like a mirror image of that for the titration of a strong acid with a strong base
- Characteristics of strong acid-strong base t-curves
 - Slow *pH* changes before and after the E-point
 - A sharp *pH* change at the E-point (*pH* = 7.00) \rightarrow 1-2 drops cause a *pH* change of 5-6 pH units)
 - The **vertical region** of the **t**-curve is quite long (from $pH\approx4$ to $pH\approx10$)
 - Any indicator having a range within the vertical region of the t-curve can be used (the indicator range does not have to be at 7.00)

 \Rightarrow Phenolphthalein (8.3-10), Methyl red (4.3-6.2), Phenol red (6.8-8.3), ... can all be used

Example: Calculate the *pH* during the titration of 20.0 mL 0.500 M HCl with 0.250 M Ba(OH)₂ after the addition of 21.0 mL Ba(OH)₂ 0.500 M HCl \rightarrow 0.500 M H₃O⁺ 0.250 M Ba(OH)₂ \rightarrow 0.500 M OH⁻ !!! 1. H₃O⁺ \rightarrow 20.0 mL × 0.500 mmol/mL = 10.0 mmol 2. OH⁻ \rightarrow 21.0 mL × 0.500 mmol/mL = 10.5 mmol 3. Excess base = 10.5 - 10.0 = 0.50 mmol OH⁻ 4. $V_{tot} = 20.0 + 21.0 = 41.0$ mL 0.50 mmol / 41.0 mL = 0.012 M OH⁻ *pOH* = -log(0.012) = 1.91 *pH* = 14.00 - 1.91 = 12.09 (basic, after E-point)

Example: Calculate the *pH* during the titration of **20.0 mL 0.500 M** HCOOH with **0.500 M** NaOH after the addition of **0.0**, **10.0**, **19.0**, **20.0** and **21.0 mL** NaOH

1) 0.0 mL NaOH added (Initial point):

 \rightarrow A 0.500 M solution of the **weak acid** HCOOH

	$HCOOH + H_2O \leftarrow$	$K_a = \frac{[\mathrm{H}_3\mathrm{O}^+][\mathrm{HCOO}^-]}{[\mathrm{HCOO}^-]}$							
i	0.500	0	0	HCOOH]					
С	-x	+ <i>x</i>	+x	$K_a = \frac{x^2}{0.500 - x} \approx \frac{x^2}{0.500}$					
e	0.500 - <i>x</i>	x	x	0.500 - x 0.500					
$\mathbf{x} = (0.500K_a)^{\frac{1}{2}} = (1.8 \times 10^{-4} \times 0.500)^{\frac{1}{2}} = 9.5 \times 10^{-3} = [\text{H}_3\text{O}^+]$									
$\Rightarrow pH = -\log[H_3O^+] = -\log(9.5 \times 10^{-3}) = 2.02$									

Weak Acid-Strong Base Titration Curves

- The strong base is completely converted to OH⁻ in water solution
 - \Rightarrow The net ionic equation of the titration is:

 $HA + OH^{-} \rightarrow H_{2}O + A^{-}$

- \Rightarrow At the E-point, *pH* > 7.00 (basic) due to the presence of A⁻ which is a weak base
- **Regions** of the titration curve:
- 1. Initial point \rightarrow solution of the weak acid HA
- 2. Before the E-point → buffer solution of the weak acid, HA, and its conjugate base, A⁻ (buffer region)
- 3. At the E-point \rightarrow solution of the weak base A⁻
- 4. After the E-point \rightarrow excess of OH⁻ from base

2) 10.0 mL NaOH added (Half-way to the E-point): 0.500 M HCOOH $0.500 \text{ M} \text{ NaOH} \rightarrow 0.500 \text{ M} \text{ OH}^-$ HCOOH $\rightarrow 20.0 \text{ mL} \times 0.500 \text{ mmol/mL} = 10.0 \text{ mmol}$ OH⁻ $\rightarrow 10.0 \text{ mL} \times 0.500 \text{ mmol/mL} = 5.00 \text{ mmol}$

		$\frac{\text{HCOOH} + \text{OH}^{-} \rightarrow \text{H}_2\text{O} + \text{HCOO}^{-}}{\text{HCOO}^{-}}$						
11	S	10.0	5.00	_	0.00			
Iomm	r	-5.00	-5.00	_	+5.00			
М	f	5.00	0.00	_	5.00			

→The system is a **buffer** (HCOOH → a, HCOO⁻ → b) $pH = pK_a + \log(n_b/n_a) = pK_a + \log(5.00/5.00) = pK_a + 0$ $\Rightarrow pH = pK_a = -\log(1.8 \times 10^{-4}) = 3.74$ \Rightarrow Half-way to the E-point → $pH = pK_a$!!!