Cont: Titration of 20.0 mL 0.500 M HCOOH with 0.500 M NaOH						
3) 19.0 mL NaOH added (Before the E-point):						
0.500 M HCOOH 0.500 M NaOH \rightarrow 0.500 M OH ⁻						
HCOOH \rightarrow 20.0 mL \times 0.500 mmol/mL = 10.0 mmol						
$OH^{-} \rightarrow 19.0 \text{ mL} \times 0.500 \text{ mmol/mL} = 9.50 \text{ mmol}$						
		НСООН	+ OH	→ H ₂ O +	HCOO-	
1	S	10.0	9.50	—	0.00	
m	r	-9.50	-9.50	_	+9.50	
M	f	0.50	0.00	_	9.50	
\rightarrow The system is a buffer (HCOOH $\rightarrow a$, HCOO ⁻ $\rightarrow b$)						
$pH = pK_a + \log(n_b/n_a) = -\log(1.8 \times 10^{-4}) + \log(9.50/0.50)$						
$\Rightarrow pH = 3.74 + 1.28 = 5.02$						

4) 20.0 mL NaOH added (E-point):

 $0.500 \text{ M HCOOH} \qquad 0.500 \text{ M NaOH} \rightarrow 0.500 \text{ M OH}^{-1}$

HCOOH \rightarrow 20.0 mL \times 0.500 mmol/mL = **10.0 mmol**

 $OH^- \rightarrow 20.0 \text{ mL} \times 0.500 \text{ mmol/mL} = 10.0 \text{ mmol}$

		$\rm HCOOH + OH^{-} \rightarrow H_2O + HCOO^{-}$			
lom	S	10.0	10.0	_	0.00
	r	-10.0	-10.0	_	+10.0
Ш	f	0.00	0.00	_	10.0

 \rightarrow A solution of the weak base HCOO⁻

 $V_{tot} = 20.0 + 20.0 = 40.0 \text{ mL}$

10.0 mmol / 40.0 mL = 0.250 M HCOO-

	$\text{HCOO}^- + \text{H}_2\text{O} \leftarrow$	$_{K}$ _[OH ⁻][HCOOH]			
i	0.250	0	0	$\mathbf{R}_{b} = [\text{HCOO}^{-}]$	
c	-x	+x	+x	$K_{t} = \frac{x^{2}}{2} \approx \frac{x^{2}}{2}$	
e	0.250 - <i>x</i>	x	x	$\begin{bmatrix} b & 0.250 - x & 0.250 \end{bmatrix}$	
$K_{L}(\text{HCOO}^{-}) = K_{L}/K_{L}(\text{HCOOH}) = 1.0 \times 10^{-14}/1.8 \times 10^{-4}$					
$K_b(\text{HCOO}^-) = 5.6 \times 10^{-11}$					
$\mathbf{x} = (K_b \times 0.250)^{\frac{1}{2}} = (5.6 \times 10^{-11} \times 0.250)^{\frac{1}{2}} = 3.7 \times 10^{-6} = [\text{OH}^-]$					
[Check assumption: $(3.7 \times 10^{-6}/0.250) \times 100 = 0.0015\% < 5\%$]					
$\Rightarrow \mathbf{pOH} = -\log[\text{OH}^-] = -\log(3.7 \times 10^{-6}) = 5.43$					
$\Rightarrow pH = 14.00 - pOH = 14.00 - 5.43 = 8.57$					
\Rightarrow At the E-point $\rightarrow pH > 7$ (basic solution!!!)					

5) 21.0 mL NaOH added (After the E-point):					
0.500 M HCOOH	$0.500 \text{ M NaOH} \rightarrow 0.500 \text{ M OH}^{-1}$				
HCOOH \rightarrow 20.0 mL \times 0.500 mmol/mL = 10.0 mmol					
$OH^{-} \rightarrow 21.0 \text{ mL} \times 0$	0.500 mmol/mL = 10.5 mmol				

		$\frac{\text{HCOOH} + \text{OH}^{-} \rightarrow \text{H}_2\text{O} + \text{HCOO}^{-}$			
Iomm	S	10.0	10.5	_	0.00
	r	-10.0	-10.0	_	+10.0
	f	0.00	0.50	_	10.0

→A solution of the excess strong base (OH⁻) and the weak base (HCOO⁻) → the weak base is neglected $V_{tot} = 20.0 + 21.0 = 41.0 \text{ mL}$

0.50 mmol / 41.0 mL = 0.012 M OH-

 $pOH = -\log(0.012) = 1.91 \Rightarrow pH = 14.00 - 1.91 = 12.09$

Weak base-Strong Acid Titration Curves

- The strong acid is completely converted to H₃O⁺ in water solution
 - \Rightarrow The net ionic equation of the titration is:

 $H_3O^+ + B \rightarrow HB^+ + H_2O$

- \Rightarrow At the E-point, *pH* < 7.00 (acidic) due to the presence of HB⁺ which is a weak acid
- **Regions** of the titration curve:
- 1. Initial point \rightarrow solution of the weak base B
- 2. Before the E-point \rightarrow buffer solution of the weak base, B, and its conjugate acid, HB⁺ (buffer region)
- 3. At the E-point \rightarrow solution of the weak acid HB⁺
- 4. After the E-point \rightarrow excess of H_3O^+ from acid

- A titration curve for the titration of a weak base with a strong acid looks like a mirror image of that for the titration of a weak acid with a strong base
- Characteristics of t-curves involving weak acids/bases
 - Slow *pH* changes before and after the E-point and a sharp *pH* change at the E-point
 - At the E-point
 - *pH* > 7.00 for titration of weak acids
 - pH < 7.00 for titration of weak bases
 - Half-way to the E-point, pH equals pK_a of the weak acid (or the conjugate acid of the weak base)
 - The vertical region of the t-curve is shorter than the vertical region for strong acid-strong base titrations
 - A careful selection of the indicator is necessary

Dependence of the Titration Curve on the Strength of the Acid or Base

• Weaker acids and bases have shorter vertical *pH* ranges at the E-point (more difficult to detect)

Titration Curves for Polyprotic Acids

- The loss of each proton results in a separate Epoint and a separate buffer region
- For a diprotic acid, H₂A, titrated with a strong base there are two E-points and two buffer regions
 - > The net ionic equations of the titration are:

$\mathrm{H}_{2}\mathrm{A} + \mathrm{OH}^{-} \rightarrow \mathrm{H}_{2}\mathrm{O} + \mathrm{HA}^{-}$	(1 st E-point)
$HA^- + OH^- \rightarrow H_2O + A^{2-}$	(2 nd E-point)

Example: Titration of H₂SO₃ (a diprotic acid with pK_{a1} = 1.85 and pK_{a2} = 7.19) with NaOH H₂SO₃ + OH⁻ \rightarrow H₂O + HSO₃⁻ (1st E-point) HSO₃⁻ + OH⁻ \rightarrow H₂O + SO₃²⁻ (2nd E-point)