19.3 Equilibria of Slightly Soluble Ionic Compounds

- Slightly soluble ionic solids reach equilibrium with their saturated solutions at very low concentrations of the dissolved solute
- The dissolved portion of the ionic solid is assumed to be completely dissociated to ions (not always the case)

The Solubility-Product Constant ($K_{s p}$)

$>$ For an ionic solid, $\mathrm{M}_{p} \mathrm{~A}_{q}$, in equilibrium with its saturated solution, the equilibrium constant of the dissolution process is called solubility-product

$$
\begin{gathered}
\mathrm{M}_{p} \mathrm{~A}_{q}(\mathrm{~s}) \leftrightarrow p \mathrm{M}^{m+}+q \mathrm{~A}^{n-} \\
\boldsymbol{K}_{s p}=\left[\mathbf{M}^{m+}\right]^{p}\left[\mathbf{A}^{n-}\right]^{q}
\end{gathered}
$$

- $\boldsymbol{K}_{s p}$ is a measure of the extent to which the solubility equilibrium proceeds to the right

$$
\uparrow K_{s p} \Leftrightarrow \uparrow \text { Solubility }
$$

- $\boldsymbol{K}_{s p}$ depends on temperature

Calculations Involving $\boldsymbol{K}_{s p}$

- Molar solubility (s) - the molarity of the saturated solution ($\mathrm{mol} / \mathrm{L}$)
- The solubility is often expressed in g / L or grams/ 100 mL of solution \rightarrow can be easily converted to $\mathrm{mol} / \mathrm{L}$
- $\boldsymbol{K}_{s p}$ can be experimentally determined by measuring the molar solubility, s
$-\boldsymbol{s}$ can be calculated if $\boldsymbol{K}_{s p}$ is known

Example: Write the solubility-product expression for $\mathrm{Al}(\mathrm{OH})_{3}$.
\rightarrow The subscripts in the formula become powers in the solubility-product expression

$$
\Rightarrow \quad \boldsymbol{K}_{\text {sp }}=\left[\mathrm{Al}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}
$$

$>$ Sulfides are slightly different since S^{2-} acts as a strong base in water and converts entirely to OH^{-}

$$
\text { Example: } \mathrm{Ag}_{2} \mathrm{~S}
$$

$$
\begin{aligned}
& \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s}) \leftrightarrow 2 \mathrm{Ag}^{+}+\mathrm{S}^{2-} \\
& \mathrm{S}^{2-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{HS}^{-}+\mathrm{OH}^{-} \\
\oplus \rightarrow & \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow 2 \mathrm{Ag}^{+}+\mathrm{HS}^{-}+\mathrm{OH}^{-} \\
\Rightarrow & \quad K_{s p}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{HS}^{-}\right]\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

Example: The solubility of $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$ is $0.022 \mathrm{~g} / \mathrm{L}$ at $25^{\circ} \mathrm{C}$. Calculate $\boldsymbol{K}_{\text {sp }}$ of $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$.
\rightarrow Convert the solubility to molar solubility, \boldsymbol{s}
$s=0.022 \frac{\mathrm{~g} \mathrm{~Pb}\left(\mathrm{IO}_{3}\right)_{2}}{\mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{IO}_{3}\right)_{2}}{557 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{IO}_{3}\right)_{2}}=3.9 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~L}}$
\rightarrow Express $\boldsymbol{K}_{s p}$ through the molar solubility, s

$$
\mathbf{P b}\left(\mathrm{IO}_{3}\right)_{2}(\mathrm{~s}) \leftrightarrow \mathrm{Pb}^{2+}+2 \mathrm{IO}_{3}^{-}
$$

$1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{IO}_{3}\right)_{2} \rightarrow 1 \mathrm{~mol} \mathrm{~Pb}^{2+}$
$1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{IO}_{3}\right)_{2} \rightarrow 2 \mathrm{~mol} \mathrm{IO}_{3}^{-}$
$\Rightarrow\left[\mathrm{Pb}^{2+}\right]=s \quad$ and $\quad\left[\mathrm{IO}_{3}^{-}\right]=2 s$
$\Rightarrow \boldsymbol{K}_{\boldsymbol{s p}}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{IO}_{3}^{-}\right]^{2}=\boldsymbol{s}(2 \boldsymbol{s})^{2}=4 \boldsymbol{s}^{3}$
$\Rightarrow \boldsymbol{K}_{\text {sp }}=4 \times\left(3.9 \times 10^{-5}\right)^{3}=\mathbf{2 . 5} \times \mathbf{1 0}^{-13}$

Example: The $\boldsymbol{K}_{s p}$ of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ is 1.4×10^{-5} at
$24^{\circ} \mathrm{C}$. Calculate the molar solubility of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$.
\rightarrow Express $\boldsymbol{K}_{s p}$ through the molar solubility, \boldsymbol{s}

$$
\begin{aligned}
& \quad \mathbf{A g}_{2} \mathbf{S O}_{\mathbf{4}}(\mathbf{s}) \leftrightarrow \mathbf{2 A g}^{+}+\mathbf{S O}_{4}{ }^{\mathbf{2 -}} \\
& \Rightarrow\left[\mathrm{Ag}^{+}\right]=2 \boldsymbol{s} \quad \text { and } \quad\left[\mathrm{SO}_{4}{ }^{2-}\right]=\boldsymbol{s} \\
& \Rightarrow \boldsymbol{K}_{s p}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{SO}_{4}{ }^{2-}\right]=(2 \boldsymbol{s})^{2} \boldsymbol{s}=4 \boldsymbol{s}^{3} \\
& \Rightarrow \boldsymbol{s}^{3}=\boldsymbol{K}_{\text {sp }} / 4 \quad \Rightarrow \quad \boldsymbol{s}=\left(\boldsymbol{K}_{\text {sp }} / 4\right)^{1 / 3} \\
& \Rightarrow \boldsymbol{s}=\left(1.4 \times 10^{-5} / 4\right)^{1 / 3}=\mathbf{1 . 5 \times 1 0 ^ { - 2 } \mathbf { M }}
\end{aligned}
$$

Note: The problem can be solved using an ice table:
$\Rightarrow \boldsymbol{K}_{s p}=(2 s)^{2} \boldsymbol{s}=4 s^{3}$

	$\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s}) \leftrightarrow 2 \mathrm{Ag}^{+}+\mathrm{SO}_{4}{ }^{2-}$		
i	excess	0	0
c	-s	+2s	+s
e	excess	$2 s$	s

The Common Ion Effect

> For a slightly soluble ionic solid, MA
$\mathrm{MA}(\mathrm{s}) \leftrightarrow \mathrm{M}^{n+}+\mathrm{A}^{n-}$

$$
\boldsymbol{K}_{\boldsymbol{s} \boldsymbol{p}}=\left[\mathrm{M}^{n+}\right]\left[\mathrm{A}^{n-}\right]
$$

- If M^{n+} is added by means of the soluble salt (MB), the equilibrium shifts to the left toward formation of more MA(s)
- MA and MB have a common ion (M^{n+})
- Similarly, if A^{n-} is added to the solution, the equilibrium also shifts to the left toward formation of more MA(s)
\Rightarrow The molar solubility decreases in the presence of common ions
$\boldsymbol{K}_{\text {sp }}$ can be used as a guide in comparing molar solubilities of different ionic compounds (works only if the compounds have the same number of ions in the formula)

$$
\uparrow \boldsymbol{K}_{s p} \Leftrightarrow \uparrow \boldsymbol{s}
$$

Table 19.3 Relationship Between $K_{\text {sp }}$ and Solubility at $25^{\circ} \mathrm{C}$

No. of lons	Formula	Cation:Anion	$\boldsymbol{K}_{\text {sp }}$	Solubility (\boldsymbol{M})
2	MgCO_{3}	$1: 1$	3.5×10^{-8}	1.9×10^{-4}
2	PbSO_{4}	$1: 1$	1.6×10^{-8}	1.3×10^{-4}
2	BaCrO_{4}	$1: 1$	2.1×10^{-10}	1.4×10^{-5}
3	$\mathrm{Ca}(\mathrm{OH})_{2}$	$1: 2$	6.5×10^{-6}	1.2×10^{-2}
3	BaF_{2}	$1: 2$	1.5×10^{-6}	7.2×10^{-3}
3	CaF_{2}	$1: 2$	3.2×10^{-11}	2.0×10^{-4}
3	$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$	$2: 1$	2.6×10^{-12}	8.7×10^{-5}

Example: At a given temperature, $\boldsymbol{K}_{s p}$ of AgBr is 7.7×10^{-13}. Estimate the solubility of AgBr in:
a) Pure $\mathrm{H}_{2} \mathrm{O}$
b) $0.10 \mathrm{M} \mathrm{CaBr}_{2}$ solution

a) In pure $\mathrm{H}_{2} \mathrm{O}$

\rightarrow Express $\boldsymbol{K}_{s p}$ through the molar solubility, \boldsymbol{s}

	$\mathrm{AgBr}(\mathrm{s}) \leftrightarrow$		
$\mathrm{Ag}^{+}+$	Br		
\boldsymbol{i}	excess	$\mathbf{0}$	$\mathbf{0}$
\boldsymbol{c}	$-s$	$+s$	$+s$
\boldsymbol{e}	excess	s	s

$\Rightarrow\left[\mathrm{Ag}^{+}\right]=\boldsymbol{s} \quad$ and $\quad\left[\mathrm{Br}^{-}\right]=\boldsymbol{s}$
$\Rightarrow \boldsymbol{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}^{-}\right]=\boldsymbol{s}^{2}$
$\Rightarrow \boldsymbol{s}=\left(\boldsymbol{K}_{\text {sp }}\right)^{1 / 2}=\left(7.7 \times 10^{-13}\right)^{1 / 2}=\mathbf{8 . 8 \times 1 0 ^ { - 7 } \mathbf { M }}$
b) In $0.10 \mathrm{M} \mathrm{CaBr}_{2}$ solution
$0.10 \mathrm{M} \mathrm{CaBr}_{2} \rightarrow 0.20 \mathrm{M} \mathrm{Br}^{-}\left(\mathrm{Br}^{-}\right.$is the common ion)
\rightarrow Express $\boldsymbol{K}_{s p}$ through the molar solubility, s

	$\operatorname{AgBr}(\mathrm{s}) \leftrightarrow \mathrm{Ag}^{+}+\mathrm{Br}^{-}$		
\boldsymbol{i}	excess	$\mathbf{0}$	$\mathbf{0 . 2 0}$
\boldsymbol{c}	$-s$	$+s$	$+\boldsymbol{s}$
\boldsymbol{e}	excess	\boldsymbol{s}	$\mathbf{0 . 2 0}+\boldsymbol{s}$

$\Rightarrow \boldsymbol{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right][\mathrm{Br}]=\boldsymbol{s}(0.20+\boldsymbol{s})$
\rightarrow Assume $\boldsymbol{s} \ll 0.20 \Rightarrow \boldsymbol{K}_{\text {sp }}=\boldsymbol{s}(0.20)$
$\Rightarrow \boldsymbol{s}=\boldsymbol{K}_{\text {sp }} / 0.20=7.7 \times 10^{-13} / 0.20=\mathbf{3 . 8} \times \mathbf{1 0}^{-\mathbf{1 2}} \mathbf{M}$
\rightarrow Check assumption \rightarrow OK
\Rightarrow The solubility is much lower in $0.1 \mathrm{M} \mathrm{CaBr}_{2}$

- Salts of weak acids $\left(\mathrm{CaCO}_{3}, \mathrm{BaSO}_{3}, \mathrm{PbF}_{2}, \mathrm{ZnS}\right.$, ...) - the anion of the salt is a weak base which reacts with added $\mathrm{H}_{3} \mathrm{O}^{+}$
\Rightarrow The solubility can be improved by adding acids
Example: BaSO_{3} (a salt of $\mathrm{H}_{2} \mathrm{SO}_{3}$)

$$
\mathrm{BaSO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{Ba}^{2+}+\mathrm{SO}_{3}{ }^{2-}
$$

\rightarrow If acid $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$is added:
$\mathrm{SO}_{3}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{HSO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$consumes $\mathrm{SO}_{3}{ }^{2-}$
\rightarrow The equilibrium shifts to the right and the solubility increases
Example: $\mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{Ca}^{2+}+\mathrm{CO}_{3}{ }^{2-}$
$\mathrm{CO}_{3}{ }^{2-}+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

The Effect of $\boldsymbol{p H}$ on Solubility

$>$ The solubility of some ionic solids in water is greatly affected by the $\boldsymbol{p H}$

- Metal hydroxides $\left(\mathrm{Fe}(\mathrm{OH})_{3}, \mathrm{Mg}(\mathrm{OH})_{2}, \ldots\right)$ - the anion $\left(\mathrm{OH}^{-}\right)$reacts with added $\mathrm{H}_{3} \mathrm{O}^{+}$
\Rightarrow The solubility can be improved by adding acids
Example: $\mathrm{Mg}(\mathrm{OH})_{2}$
$\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \leftrightarrow \mathrm{Mg}^{2+}+2 \mathrm{OH}^{-}$
\rightarrow If acid $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$is added:
$\rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$consumes $\mathrm{OH}^{-}\left(\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}\right)$
\rightarrow The equilibrium shifts to the right and the solubility increases

Predicting Precipitation $-Q_{s p}$ versus $K_{s p}$
$>$ The reaction quotient of the dissolution process $\left(\boldsymbol{Q}_{s p}\right)$ is defined in the same way as $\boldsymbol{K}_{s p}$ and at equilibrium $\boldsymbol{Q}_{s p}=\boldsymbol{K}_{s p}$
$>$ To predict precipitation, compare $\boldsymbol{Q}_{s p}$ to $\boldsymbol{K}_{s p}$ \rightarrow If $\boldsymbol{Q}_{s p}>\boldsymbol{K}_{s p}$, precipitation occurs
\rightarrow If $\boldsymbol{Q}_{s p}<\boldsymbol{K}_{s p}$, dissolution occurs (no precipitation)
\rightarrow If $\boldsymbol{Q}_{s p}=\boldsymbol{K}_{s p}$, no change occurs
Example: Does a precipitate form after mixing of $200 . \mathrm{mL} 1.0 \times 10^{-4} \mathrm{M} \mathrm{AgNO}_{3}$ with 900 . mL $1.0 \times 10^{-6} \mathrm{KCl}$?
($\boldsymbol{K}_{s p}=1.8 \times 10^{-10}$ for AgCl$)$

$$
\begin{aligned}
& \rightarrow \rightarrow \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{KCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{KNO}_{3}(\mathrm{aq}) \\
& \rightarrow \text { Net ionic equation: } \mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{AgCl}(\mathrm{~s}) \\
& \rightarrow \text { Reverse: } \mathrm{AgCl}(\mathrm{~s}) \rightarrow \mathrm{Ag}^{+}+\mathrm{Cl}^{-} \\
& \quad \boldsymbol{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right][\mathrm{Cl}]=1.8 \times 10^{-10} \\
& \quad \boldsymbol{V}_{\text {tot }}=0.200+0.900=1.100 \mathrm{~L}
\end{aligned}
$$

\rightarrow Initial concentrations after mixing:

$$
\begin{aligned}
& {\left[\mathrm{Ag}^{+}\right]=\frac{1.0 \times 10^{-4} \frac{\mathrm{~mol}}{\mathrm{~L}} \times 0.200 \mathrm{~L}}{1.100 \mathrm{~L}}=1.8 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~L}}} \\
& {\left[\mathrm{Cl}^{-}\right]=\frac{1.0 \times 10^{-6} \frac{\mathrm{~mol}}{\mathrm{~L}} \times 0.900 \mathrm{~L}}{1.100 \mathrm{~L}}=8.2 \times 10^{-7} \frac{\mathrm{~mol}}{\mathrm{~L}}}
\end{aligned}
$$

\rightarrow Calculate $\boldsymbol{Q}_{s p}$:

$$
\begin{aligned}
& \boldsymbol{Q}_{s p}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=\left(1.8 \times 10^{-5}\right) \times\left(8.2 \times 10^{-7}\right) \\
& \boldsymbol{Q}_{s p}=1.5 \times 10^{-11} \\
& \boldsymbol{K}_{s p}=1.8 \times 10^{-10} \\
& \Rightarrow \boldsymbol{Q}_{s p}<\boldsymbol{K}_{s p} \\
& \Rightarrow \text { No precipitation occurs }
\end{aligned}
$$

