19.3 Equilibria of Slightly Soluble Ionic Compounds

- Slightly soluble ionic solids reach equilibrium with their saturated solutions at very low concentrations of the dissolved solute
- The dissolved portion of the ionic solid is assumed to be completely dissociated to ions (not always the case)

The Solubility-Product Constant (K_{sp})

➢ For an ionic solid, M_pA_q, in equilibrium with its saturated solution, the equilibrium constant of the dissolution process is called **solubility-product**

 $\mathbf{M}_{p}\mathbf{A}_{q}(\mathbf{s}) \leftrightarrow p\mathbf{M}^{m+} + q\mathbf{A}^{n-}$ $\mathbf{K}_{sp} = [\mathbf{M}^{m+}]^{p} [\mathbf{A}^{n-}]^{q}$

Calculations Involving K_{sp}

- Molar solubility (s) the molarity of the saturated solution (mol/L)
 - The solubility is often expressed in g/L or grams/100 mL of solution → can be easily converted to mol/L
 - $-K_{sp}$ can be experimentally determined by measuring the molar solubility, s
 - -s can be calculated if K_{sp} is known

Example: Write the solubility-product expression for $Al(OH)_3$.

 \rightarrow The subscripts in the formula become powers in the solubility-product expression

 $\Rightarrow \quad K_{sp} = [Al^{3+}][OH^{-}]^{3}$

Sulfides are slightly different since S²⁻ acts as a strong base in water and converts entirely to OH⁻

Example: Ag₂S

$$Ag_2S(s) \leftrightarrow 2Ag^+ + S^{2-}$$

 $\mathrm{S}^{2\text{-}} + \mathrm{H}_{2}\mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}\mathrm{S}^{\text{-}} + \mathrm{O}\mathrm{H}^{\text{-}}$

 $\textcircled{+} \rightarrow \mathrm{Ag}_2\mathrm{S}(\mathrm{s}) + \mathrm{H}_2\mathrm{O}(\mathrm{l}) \leftrightarrow 2\mathrm{Ag}^+ + \mathrm{HS}^- + \mathrm{OH}^-$

 $\Rightarrow \qquad \mathbf{K}_{sp} = [\mathrm{Ag^+}]^2 [\mathrm{HS^-}] [\mathrm{OH^-}]$

Example: The solubility of Pb(IO₃)₂ is 0.022 g/L at 25°C. Calculate K_{sp} of Pb(IO₃)₂. \rightarrow Convert the solubility to molar solubility, s $s = 0.022 \frac{\text{gPb}(IO_3)_2}{\text{L}} \times \frac{1 \mod \text{Pb}(IO_3)_2}{557 \text{ gPb}(IO_3)_2} = 3.9 \times 10^{-5} \frac{\text{mol}}{\text{L}}$ \rightarrow Express K_{sp} through the molar solubility, s $\text{Pb}(IO_3)_2(s) \leftrightarrow \text{Pb}^{2+} + 2IO_3^{-1}$ 1 mol Pb(IO₃)₂ \rightarrow 1 mol Pb²⁺ 1 mol Pb(IO₃)₂ \rightarrow 2 mol IO₃⁻¹ $\Rightarrow [\text{Pb}^{2+}] = s$ and $[IO_3^{-1}] = 2s$ $\Rightarrow K_{sp} = [\text{Pb}^{2+}][IO_3^{-1}]^2 = s(2s)^2 = 4s^3$ $\Rightarrow K_{sp} = 4 \times (3.9 \times 10^{-5})^3 = 2.5 \times 10^{-13}$

Example: The K_{sp} of Ag ₂ SO ₄ is 1.4×10^{-5} at 24°C. Calculate the molar solubility of Ag ₂ SO ₄ .						
\rightarrow Express K_{sp} through the molar solubility, s						
$Ag_2SO_4(s) \leftrightarrow 2Ag^+ + SO_4^{2-}$						
\Rightarrow [Ag ⁺] = 2s and [SO ₄ ²⁻] = s						
$\Rightarrow \mathbf{K}_{sp} = [\mathrm{Ag}^+]^2 [\mathrm{SO}_4^{2-}] = (2s)^2 s = 4s^3$						
$\Rightarrow s^3 = K_{sp}/4 \qquad \Rightarrow \qquad s = (K_{sp}/4)^{1/3}$						
$\Rightarrow \mathbf{s} = (1.4 \times 10^{-5}/4)^{1/3} = \mathbf{\overline{1.5 \times 10^{-2} M}}$						
Note: The problem	$Ag_2SO_4(s) \leftrightarrow 2Ag^+ + SO_4^{2-}$					
can be solved using an	i	excess	0	0		
<i>ice</i> table:	с	-S	+2s	+ s		
$\Rightarrow \mathbf{K}_{sp} = (2s)^2 \mathbf{s} = 4s^3$	e	excess	<i>2s</i>	S		

The Common Ion Effect

➢ For a slightly soluble ionic solid, MA

 $MA(s) \leftrightarrow M^{n+} + A^{n-}$

$$\boldsymbol{K}_{sp} = [\mathbf{M}^{n+}][\mathbf{A}^{n-}]$$

- If Mⁿ⁺ is added by means of the soluble salt (MB), the equilibrium shifts to the left toward formation of more MA(s)
- MA and MB have a common ion (M^{n+})
- Similarly, if Aⁿ⁻ is added to the solution, the equilibrium also shifts to the left toward formation of more MA(s)
- ⇒The molar solubility decreases in the presence of common ions

$\begin{array}{l} \succ K_{sp} \text{ can be used as a guide in comparing molar} \\ \text{solubilities of different ionic compounds (works only if the compounds have the same number of ionin the formula)} \\ \qquad $						
No. of lons		Cation:Anion	K _{sp}	Solubility (M)		
2	MgCO ₃	1:1	3.5×10^{-8}	1.9×10^{-4}		
2	PbSO ₄	1:1	1.6×10^{-8}	1.3×10^{-4}		
2 2	BaCrO ₄	1:1	2.1×10^{-10}	1.4×10^{-5}		
3	Ca(OH) ₂	1:2	6.5×10^{-6}	1.2×10^{-2}		
3	BaF ₂	1:2	1.5×10^{-6}	7.2×10^{-3}		
3	CaF_2	1:2	3.2×10^{-11}	2.0×10^{-4}		
3	$Ag_2 CrO_4$	2:1	2.6×10^{-12}	8.7×10^{-5}		

Example: At a given temperature, K_{sp} of AgBr is 7.7×10^{-13} . Estimate the solubility of AgBr in: a) Pure H_2O b) 0.10 M CaBr₂ solution a) In pure H₂O \rightarrow Express K_{sp} through the molar solubility, s $AgBr(s) \leftrightarrow Ag^+ + Br^$ i excess 0 0 С **-**S +s+sS S e excess \Rightarrow [Ag⁺] = s and $[Br^-] = s$ $\Rightarrow \mathbf{K}_{sp} = [\mathrm{Ag}^+][\mathrm{Br}^-] = s^2$ $\Rightarrow s = (K_{sp})^{1/2} = (7.7 \times 10^{-13})^{1/2} = 8.8 \times 10^{-7} \text{ M}$

Salts of weak acids (CaCO₃, BaSO₃, PbF₂, ZnS, ...) – the anion of the salt is a weak base which reacts with added H₃O⁺
⇒The solubility can be improved by adding acids
Example: BaSO₃ (a salt of H₂SO₃) BaSO₃(s) ↔ Ba²⁺ + SO₃²⁻
→If acid (H₃O⁺) is added: SO₃²⁻ + H₃O⁺ → HSO₃⁻ + H₂O(1)
→H₃O⁺ consumes SO₃²⁻
→The equilibrium shifts to the right and the solubility increases
Example: CaCO₃(s) ↔ Ca²⁺ + CO₃²⁻
CO₃²⁻ + 2H₃O⁺ → H₂CO₃ + H₂O(1) → CO₂(g) + 2H₂O(1)

The Effect of *pH* on Solubility

- The solubility of some ionic solids in water is greatly affected by the *pH*
 - Metal hydroxides (Fe(OH)₃, Mg(OH)₂, ...) the anion (OH⁻) reacts with added H₃O⁺

 \Rightarrow The solubility can be improved by adding acids

Example: Mg(OH)₂

 $Mg(OH)_2(s) \leftrightarrow Mg^{2+} + 2OH^{-}$

 \rightarrow If acid (H₃O⁺) is added:

 \rightarrow H₃O⁺ consumes OH⁻ (H₃O⁺ + OH⁻ \rightarrow 2H₂O)

→The equilibrium shifts to the right and the **solubility increases**

Predicting Precipitation – Q_{sp} versus K_{sp}
➤ The reaction quotient of the dissolution process (Q_{sp}) is defined in the same way as K_{sp} and at equilibrium Q_{sp} = K_{sp}
➤ To predict precipitation, compare Q_{sp} to K_{sp} → If Q_{sp} > K_{sp}, precipitation occurs
→ If Q_{sp} < K_{sp}, dissolution occurs (no precipitation)
→ If Q_{sp} = K_{sp}, no change occurs
Example: Does a precipitate form after mixing of 200. mL 1.0×10⁻⁴ M AgNO₃ with 900. mL 1.0×10⁻⁶ KCl? (K_{sp} = 1.8×10⁻¹⁰ for AgCl)

$$\rightarrow \text{Calculate } \boldsymbol{Q}_{sp}:$$

$$\boldsymbol{Q}_{sp} = [\text{Ag}^+][\text{Cl}^-] = (1.8 \times 10^{-5}) \times (8.2 \times 10^{-7})$$

$$\boldsymbol{Q}_{sp} = 1.5 \times 10^{-11}$$

$$\boldsymbol{K}_{sp} = 1.8 \times 10^{-10}$$

$$\Rightarrow \boldsymbol{Q}_{sp} < \boldsymbol{K}_{sp}$$

$$\Rightarrow \text{No precipitation occurs}$$