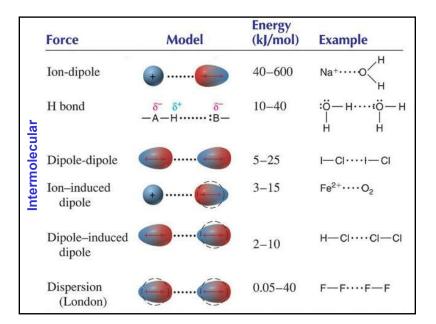

12.3 Types of Intermolecular Forces (IF)

- *IF*s are based on electrostatic interactions between opposite charges, but they are much weaker than chemical bonds for two reasons:
 - Smaller el. charges are involved
 - The distances between the el. charges are longer
 - **Covalent radius** ½ the distance between two identical bonded atoms
 - van der Waals radius ½ the distance between two adjacent, identical (nonbonded) atoms from different molecules → *The van der Waals radius of an atom is always longer than its covalent radius*
 - -IFs are also called van der Waals forces
 - Stronger IFs lead to higher T_b and T_m values
- Hydrogen Bonding *IF* between molecules containing H-atoms connected to highly electronegative small atoms with lone pairs like F, O and N
 - Due to the very high polarity of the H-F, H-O and H-N bonds (the δ + of H is attracted to the δ - of the lone pair of F, O or N)

- **Ion-Dipole** forces *IF*s between an ion and a nearby polar molecule (ionic compounds like NaCl dissolved in polar solvents like H₂O)
- **Dipole-Dipole** forces *IF*s between two polar molecules (δ + of one molecule attracts δ of the other)
 - Increase with increasing the dipole moment

Example:


 $CH_3CH_2CH_3$ and CH_3CN have almost the same molecular weight and size. Since CH_3CN is much more polar, its dipole-dipole forces are much stronger and its boiling and melting points, T_b and T_m , are much higher.

- Charge-Induced Dipole forces
 - Induced dipole a dipole induced in a particle through a distortion of its electron cloud by an electric field such as a nearby charge or another dipole
 - Polarizability the ease with which the electron cloud of a particle can be distorted (increases with increasing the size of the electron cloud and therefore with the molar mass of the particle)
 - Ion-Induced Dipole forces IFs between an ion and a dipole it induces in a nearby particle
 - Dipole-Induced Dipole forces *IF*s between a dipole and a dipole it induces in a nearby particle

• Dispersion (London) forces

- **Instantaneous dipole** a dipole that results from an instantaneous fluctuation of the electron cloud in a particle
- The instantaneous dipole can induce a dipole in a nearby particle and create an **induced dipole** in it
- Dispersion (London) forces *IF*s between an instantaneous dipole and an induced dipole in a nearby particle
- Dispersion forces exist between any particles, but they are the only type of IFs for non-polar molecules and atoms of noble gases

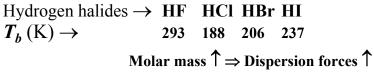
Examples: CH_4 , Cl_2 , CO_2 , Ar, Kr, Xe ... are all non-polar \Rightarrow only dispersion forces are present

- The **strength** of the dispersion forces depends on:
 - The polarizability (size, molar mass) of the particles
 ↑size, molar mass ⇒ ↑dispersion forces
 - The **shape** of the particles dispersion forces between rod-shaped molecules are stronger compared to spherical molecules of the same size (rod-shapes provide more points of contact)

Example:

The boiling points of the noble gases increase down the group as the molar mass increases

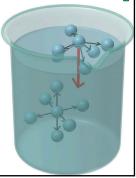
Noble gases \rightarrow	He	Ne	Ar	Kr	Xe
$T_b(^{\circ}\mathrm{C}) \rightarrow$					
Molar ma	6				


	Force	Model	Basis of Attraction	Energy (kJ/mol)	Example
	Bonding				
Intramolecular	Ionic		Cation-anion	400-4000	NaCl
	Covalent	0,0	Nuclei–shared e [–] pair	150-1100	Н—Н
	Metallic		Cations-delocalized electrons	75–1000	Fe

• Comparing the different types of *IF*s
– The most common *IF*s in substances are H-
bonding, dipole-dipole and dispersion forces
– Dispersion forces are typically more important
than dipole-dipole forces, and if they have
opposite trends, the dispersion forces dominate
Example:
H-halides
$$\rightarrow$$
 HCl HBr HI
 T_b (K) \rightarrow 188 206 237
Dipole moment $\downarrow \Rightarrow$ Dipole-dipole forces \downarrow
Molar mass $\uparrow \Rightarrow$ Dispersion forces \uparrow
The dispersion forces dominate the trend and T_b^{\uparrow}

Example: Identify the types of *IF*s and rank the following substances in order of increasing boiling point, T_b : CH₃CH₃, CH₃CH₂OH, CH₃-O-CH₃, CH₃CH₂CH₂CH₃ CH₃CH₂OH \rightarrow O-H bond \rightarrow H-bonding \rightarrow dispersion forces \rightarrow polar \rightarrow dipole-dipole forces CH₃CH₂CH₂CH₃ \rightarrow non-polar \rightarrow dispersion CH₃-O-CH₃ \rightarrow no O-H bonds \rightarrow dispersion \rightarrow slightly polar \rightarrow dipole-dipole CH₃CH₃ \rightarrow non-polar \rightarrow dispersion forces

- Comparing the different types of *IF*s
 - H-bonding is typically much stronger than dipole-dipole and dispersion forces for particles of similar sizes


Example:

HF breaks the trend and has an anomalously high T_b due to the much stronger H-bonding forces which are not present in HCl, HBr and HI

12.3 Properties of Liquids

- Surface tension (σ) the energy needed to increase the surface area of a liquid by a unit amount (units \rightarrow J/m²)
- Surface molecules experience a **net inward force**
- To create more surface (surface molecules), energy is needed to work against this inward force
- ⇒Liquids tend to assume shapes that **minimize the surface area** (spherical drops)
- > σ↑ with increasing the strength of the *IF*s

- **Capillary action** the rising of liquids in narrow tubes (capillaries) against the force of gravity (results from the competition of two types of forces)
 - Adhesive forces between the molecules of the liquid and the walls of the capillary
 - Cohesive forces between the molecules within the liquid (*IF*s)

Examples: The H_2O level rises inside a narrow glass tube \rightarrow the adhesive forces are stronger; The **Hg** level drops inside a narrow glass tube \rightarrow the cohesive forces are stronger

- Viscosity (η) the resistance to flow
 - $-\eta\uparrow$ with increasing the strength of the *IF*s
 - $-\eta \downarrow$ with increasing the temperature (the kinetic energy of the molecules increases relative to the *IF*s of attraction between them)

Examples:

Oil and honey flow easier at higher T