

Limitations of the 1 st Law
> The 1^{st} law states that the total energy of the
universe is constant $(E_{univ} = \text{const.})^{-1}$
$\rightarrow E_{univ}$ can be separated into two parts, energy of the
system, E_{sys} , and energy of its surroundings, E_{surr}
$\Rightarrow E_{univ} = E_{sys} + E_{surr} \Rightarrow \Delta E_{univ} = \Delta E_{sys} + \Delta E_{surr}$
\rightarrow Since $E_{univ} = \text{const.}, \Delta E_{univ} = 0$
$\Rightarrow \Delta E_{sys} + \Delta E_{surr} = 0 \Rightarrow \Delta E_{sys} = -\Delta E_{surr}$
\rightarrow Since $\Delta E = q + w \implies (q + w)_{sys} = -(q + w)_{surr}$
→ Energy (heat and/or work) released by the system is absorbed by its surroundings and vice versa
\rightarrow The 1 st law doesn't explain the direction of
spontaneous processes since energy conservation can
be achieved in either direction

The Sign of ΔH and Spontaneity

- ➤ The sign of △*H* has been used (especially by organic chemists) to predict spontaneous changes not a reliable indicator
 - >In most cases spontaneous reactions are exothermic ($\Delta H < 0$) \rightarrow combustion, formation of salts from elements, neutralization, rusting, ...
 - > In some cases, spontaneous reactions can be endothermic ($\Delta H > 0$) \rightarrow dissolution of many salts, melting and vaporization at high T, ...
- →A common feature of all **spontaneous endothermic** reactions is that their products are less ordered than the reactants (**disorder**↑ during the reaction)

Example: Solid \rightarrow Liquid \rightarrow Gas most ordered least ordered

The Meaning of Disorder and Entropy

Macro-state – the macroscopic state of a system described by its parameters (P, V, n, T, E, H, etc.)

Spontaneous processes proceed from macro-states that are less probable toward ones that are more probable

- Micro-state one of the possible microscopic ways through which the macro-state can be achieved
 - Refers to one of the possible ways the total energy can be distributed over the quantized energy levels of the system
 - This includes energy levels related to all possible motions of the molecules (translational, rotational, vibrational, etc.)

More probable macro-states are those that can be achieved in a larger number of different ways (micro-states), and therefore, are more disordered

- $\uparrow W \Leftrightarrow \uparrow \text{Disorder}$
- Entropy (S) a state function related to the disorder of the system
 - Boltzmann equation $\rightarrow S = k \ln(W)$
 - $\rightarrow k = 1.38 \times 10^{-23}$ J/K (Boltzmann constant)

 $\uparrow W \Leftrightarrow \uparrow$ Disorder $\Leftrightarrow \uparrow S$

- -S is a state function depends only on the present state of the system and not on the way it arrived in that state
- \Rightarrow The entropy change, $\Delta S = S_{final} S_{initial}$, is path independent

 \Rightarrow If $\Delta S > 0$, the entropy and the disorder increase \Rightarrow If $\Delta S < 0$, the entropy and the disorder decrease

➤ In thermodynamics, the disorder of a macro-state is measured by the **statistical probability**, $W \rightarrow$ the number of different ways the energy can be distributed over the quantized energy levels of the system while still having the same total energy, or simply the number of micro-states through which the macro-state can be achieved

Example: Arrangement of 2 particles (**x** and **o**) in 3 possible positions $\rightarrow 1 2 3$

 \rightarrow There are 6 possible arrangements (W = 6)

 \rightarrow Increasing the # of possible positions increases W

- The entropy and the disorder of a system can be increased in two basic ways:
 - Heating (increases the **thermal disorder**)
 - Expansion, mixing or phase changes (increase the positional disorder)

Note: Both thermal and positional disorder have the same origin (the number of possible micro-states)

Example: Gases expand spontaneously in vacuum.

- \rightarrow During the expansion the total energy does not change (no heat is exchanged and no work is done since $P_{ext} = 0$)
- \rightarrow The volume increases so the number of possible positions available to the particles increases $\Rightarrow W \uparrow$
 - \Rightarrow The process is driven by increase in the positional disorder and thus increase in the entropy

Entropy and the 2nd Law

- The entropy of the system alone can not be used as a criterion for spontaneity
 - > Spontaneous processes can have $\Delta S > 0$ or $\Delta S < 0$
- The true criterion for spontaneity is the entropy of the universe (S_{univ})
- The 2nd law of thermodynamics for any spontaneous process, the entropy of the universe increases $(\Delta S_{univ} > 0)$

$$\Rightarrow \Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} > 0$$

- There are no restrictions on the signs of ΔS_{sys} and ΔS_{surr} as long as the sum of the two is greater than zero

Standard Molar Entropies and the 3rd Law

- The 3rd law of thermodynamics the entropy of a perfect crystal at the absolute zero is zero (As $T \rightarrow 0$ K, $S_{sys} \rightarrow 0$)
 - At the absolute zero, the particles of the crystal achieve the lowest possible energy and there is only one way they can be arranged (W=1)

$$\Rightarrow S_{sys} = k \ln(1) = k (0) = 0$$

- The 3rd law allows the use of **absolute entropies**
- $\Rightarrow The entropy of a substance at a given T is equal$ to the entropy increase accompanying the heatingof the substance from 0 K that T

- Standard molar entropy (S^o) the entropy of 1 mol of a substance in its standard state and a specified temperature (usually 298 K)
 - Standard state 1 atm for gases, 1 M for solutions, pure for liquids and solids
 - Units of $S^o \rightarrow J/mol \cdot K$
- *S*^o can be affected by changing the thermal and positional disorder in different ways
 - Temperature changes for a given substance,S^o increases as the temperature is increased

$$\uparrow T \Rightarrow \uparrow S^o$$

→ As T^{\uparrow} , the average E_k of the molecules \uparrow and the # of ways to distribute E_k among the particles \uparrow so W and $S^o \uparrow$

Phase changes – for a given substance, S° increases as the substance is converted from solid to liquid to gas

$$S^{o}_{(solid)} < S^{o}_{(liquid)} < S^{o}_{(gas)}$$

- → In the liquid and especially in the gas phase, the particles have more freedom to move around an thus higher positional disorder
- \Rightarrow Within each phase, the entropy increases gradually with increasing *T*
- \Rightarrow Since phase changes occur at constant *T*, a sharp change in entropy is observed as the *T* passes through the melting or boiling points
- \Rightarrow Since the gas phase has much higher S^o than the liquid and solid phases, $\Delta S^o_{vap} >> \Delta S^o_{fus}$

