


Standard molar entropy (continued)

 $→ S^{\circ} \text{ decreases as gases dissolve in liquids or solids}$ $→ The molecules of the gas are more restricted in solution, so <math>S^{\circ} \downarrow$ **Dissolving gases** $\Rightarrow S^{\circ} \downarrow$ → S° increases as gases are mixed with each other → Mixing increases the positional disorder, so $S^{\circ} \uparrow$ **Mixing of gases** $\Rightarrow S^{\circ} \uparrow$ **> Atomic size or molecular complexity** → For elements and for similar compounds in the same phase, S° increases with the molar mass (the # of electrons \uparrow , so $S^{\circ} \uparrow$) **Molar mass** $\uparrow \Rightarrow S^{\circ} \uparrow$

>Dissolution of gases

20.2 Calculating the Entropy Change of a Reaction

Entropy Changes in the System

• Standard entropy of reaction (ΔS_r^{o}) – the difference between the standard entropies of the products and the reactants

$$\Delta S_r^{o} = \Sigma m S^{o} (\text{products}) - \Sigma n S^{o} (\text{reactants})$$

(*n*, *m* - stoichiometric coefficients of reactants or products)

 \rightarrow The equation is similar to the Hess's law expression for the standard reaction enthalpy

 $\Delta H_r^o = \sum m \Delta H_f^o (\text{products}) - \sum n \Delta H_f^o (\text{reactants})$

Example: Calculate the standard entropy (ΔS_r^o) of the reaction N₂O₄(g) \rightarrow 2NO₂(g) $\Delta S_r^o = \Sigma m S^o$ (products) - $\Sigma n S^o$ (reactants) $\Delta S_r^o = 2 \times S^o$ (NO₂(g)) - 1× S^o (N₂O₄(g)) \rightarrow From Appendix B: $\Delta S_r^o = 2 \mod \times 239.9 \text{ J/mol} \cdot \text{K} - 1 \mod \times 304.3 \text{ J/mol} \cdot \text{K}$ $\Delta S_r^o = \boxed{175.5 \text{ J/K}}$ \triangleright For reactions involving gases: $\triangleright \Delta S_r^o > 0$ if (# mol gaseous products) > (# mol gaseous reactants) $\triangleright \Delta S_r^o < 0$ if (# mol gaseous products) < (# mol gaseous reactants)

Entropy Changes in the Surroundings

The surroundings function as a heat sink for the system (reaction) $\rightarrow q_{surr} = -q_{svs}$

Exothermic reactions – heat is lost by the system and gained by the surroundings which increases the thermal disorder in the surroundings

 $\rightarrow q_{sys} < 0 \implies q_{surr} > 0$ and $\Delta S_{surr} > 0$

Endothermic reactions – heat is gained by the system and lost by the surroundings which reduces the thermal disorder in the surroundings

 $\rightarrow q_{sys} > 0 \implies q_{surr} < 0 \text{ and } \Delta S_{surr} < 0$

≻ΔS_{surr} is proportional to the amount of heat transferred → ΔS_{surr} ∝ q_{surr} ⇒ ΔS_{surr} ∝ - q_{sys}
$$\begin{split} & \Delta S_{surr} \text{ is inversely proportional to the } T \text{ since} \\ & \text{the heat transfer changes the disorder of the} \\ & \text{surroundings more at lower } T \Rightarrow \Delta S_{surr} \propto 1/T \\ & \Rightarrow \Delta S_{surr} = -q_{sys}/T \\ & \text{>At constant pressure } (q_p = \Delta H) \\ & \implies \Delta S_{surr} = -\Delta H_{sys}/T \\ & \rightarrow \text{The equation allows the calculation of } \Delta S_{surr} \\ & \text{from the reaction enthalpy and the temperature} \\ & (applies strictly only at constant T and P) \\ & \text{>According to the } 2^{nd} \text{ law, for a spontaneous} \\ & \text{reaction} \\ & \Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} > 0 \end{split}$$

Substituting ΔS_{surr} with $-\Delta H_{sys}/T$ leads to

$$\Delta S_{univ} = \Delta S_{sys} - \frac{\Delta H_{sys}}{T} > 0$$

 \rightarrow The equation allows the calculation of ΔS_{univ} from the reaction entropy and enthalpy and the temperature (applies strictly at constant *T* and *P*)

 \rightarrow The equation provides a criterion for spontaneity in any systems at constant *T* and *P*

- > **Positive** ΔS_{univ} (spontaneous process) is favored by
 - > Positive entropy of reaction $(\Delta S_{sys} > 0)$ the disorder of the system increases
 - > Negative enthalpy of reaction $(\Delta H_{sys} < 0)$ the disorder of the surroundings increases

Entropy Changes and the Equilibrium State $\Rightarrow \Delta S_{univ} > 0 \rightarrow$ the forward reaction is spontaneous $\Rightarrow \Delta S_{univ} < 0 \rightarrow$ the forward reaction is nonspontaneous (the reverse reaction is spontaneous) $\Rightarrow \Delta S_{univ} = 0 \rightarrow$ the reaction is at equilibrium $\Rightarrow \text{At equilibrium: } \Delta S_{univ}^{o} = \Delta S_{sys}^{o} - \Delta H_{sys}^{o}/T = 0$ $\Rightarrow \text{At equilibrium: } \Delta S_{sys}^{o} = \Delta H_{sys}^{o}/T$ \rightarrow The equation is useful for calculating the entropies of phase changes during which the system is at equilibrium at constant *T* and *P* Example: Calculate ΔS_{vap}^{o} of H₂O at its normal b.p. $\rightarrow \Delta H_{vap}^{o} = 40.7$ kJ per 1 mol of H₂O $\Rightarrow \Delta S_{vap}^{o} = \Delta H_{vap}^{o}/T = 40.7$ kJ / 373 K = 0.109 kJ/K $\begin{array}{l} \textbf{Example: Is the combustion of glucose} \\ \text{spontaneous at } 25^{\circ}\text{C?} \\ C_{6}\text{H}_{12}\text{O}_{6}(\text{s}) + 6\text{O}_{2}(\text{g}) \rightarrow 6\text{CO}_{2}(\text{g}) + 6\text{H}_{2}\text{O}(\text{g}) \\ \rightarrow \text{Calculate } \Delta S_{sys}{}^{o} \text{ and } \Delta H_{sys}{}^{o} \text{ using Appendix B} \\ \Delta S_{r}{}^{o} = [6 \times S^{o}(\text{CO}_{2}(\text{g})) + 6 \times S^{o}(\text{H}_{2}\text{O}(\text{g}))] - \\ & [1 \times S^{o}(\text{C}_{6}\text{H}_{12}\text{O}_{6}(\text{s})) + 6 \times S^{o}(\text{O}_{2}(\text{g}))] \\ \Delta S_{r}{}^{o} = [6(214) + 6(189)] - [1(212) + 6(205)] = 976 \text{ J/K} \\ \Delta H_{r}{}^{o} = [6 \times \Delta H_{f}{}^{o}(\text{CO}_{2}(\text{g})) + 6 \times \Delta H_{f}{}^{o}(\text{H}_{2}\text{O}(\text{g}))] - \\ & [1 \times \Delta H_{f}{}^{o}(\text{C}_{6}\text{H}_{12}\text{O}_{6}(\text{s})) + 6 \times \Delta H_{f}{}^{o}(\text{O}_{2}(\text{g}))] \\ \Delta H_{r}{}^{o} = [6(-394) + 6(-242)] - [1(-1273)] = -2543 \text{ kJ} \\ \Delta S_{sys}{}^{o} = 0.976 \text{ kJ/K} \\ \Delta S_{surr}{}^{o} = -\Delta H_{sys}{}^{o}/T = -(-2543 \text{ kJ})/(298 \text{ K}) = 8.53 \text{ kJ/K} \\ \Delta S_{univ}{}^{o} = 0.976 + 8.53 = 9.51 \text{ kJ/K} > 0 \rightarrow \text{spontaneous} \end{array}$

Spontaneous Exo and Endothermic Reactions $\Delta S_{univ}^{o} = \Delta S_{sys}^{o} + \Delta S_{surr}^{o} > 0$ > For exothermic reactions $\Delta S_{surr} = -\Delta H_{sys} / T > 0$ > If $\Delta S_{sys} > 0$, the reaction is spontaneous> If $\Delta S_{sys} < 0$, the reaction is spontaneous only if the increase of S_{surr} is greater than the decrease of S_{sys} > For endothermic reactions $\Delta S_{surr} = -\Delta H_{sys} / T < 0$ > If $\Delta S_{sys} > 0$, the reaction is spontaneous only if the increase of S_{surr} is greater than the decrease of S_{sys} > For endothermic reactions $\Delta S_{surr} = -\Delta H_{sys} / T < 0$ > If $\Delta S_{sys} > 0$, the reaction is spontaneous only if the increase of S_{sys} is greater than the decrease of S_{surr} > If $\Delta S_{sys} < 0$, the reaction is not spontaneousExample: $2H_2(g) + O_2(g) \rightarrow 2H_2O(g) + heat$ Exothermic $\Rightarrow \Delta S_{surr} > 0$ Less gaseous products $\Rightarrow \Delta S_{sys} < 0$