20.4 Free Energy, Equilibrium, and Reaction Direction

$>$ The direction of reaction can be predicted from the sign of $\Delta \boldsymbol{G}$ or by comparing \boldsymbol{Q} and \boldsymbol{K} $>$ If $\boldsymbol{Q}<\boldsymbol{K} \rightarrow \boldsymbol{Q} / \boldsymbol{K}<1 \rightarrow \boldsymbol{\operatorname { l n }} \boldsymbol{Q} / \boldsymbol{K}<\mathbf{0}$ and $\Delta \boldsymbol{G}<\mathbf{0}$, the forward reaction proceeds
$>$ If $\boldsymbol{Q}>\boldsymbol{K} \rightarrow \boldsymbol{Q} / \boldsymbol{K}>1 \rightarrow \ln \boldsymbol{Q} / \boldsymbol{K}>\mathbf{0}$ and $\Delta \boldsymbol{G}>\mathbf{0}$, the reverse reaction proceeds
$>$ If $\boldsymbol{Q}=\boldsymbol{K} \rightarrow \boldsymbol{Q} / \boldsymbol{K}=1 \rightarrow \ln \boldsymbol{Q} / \boldsymbol{K}=\mathbf{0}$ and $\Delta \boldsymbol{G}=\mathbf{0}$, the reaction is at equilibrium
$\Rightarrow \Delta \boldsymbol{G}$ and $\ln \boldsymbol{Q} / \boldsymbol{K}$ have the same signs and are related:

$$
\Delta G_{r}^{T}=R T \ln \frac{Q}{K}=R T \ln Q-R T \ln K
$$

Example: Calculate $\boldsymbol{K}_{\boldsymbol{p}}$ at 298 K for the reaction

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

\rightarrow Calculate $\Delta \boldsymbol{G}_{r}{ }^{0,298}$
$\rightarrow \boldsymbol{T}=298 \mathrm{~K} \Rightarrow \Delta \boldsymbol{G}_{f}^{\boldsymbol{o}, 298}$ values from Appendix B can be used
$\Delta \boldsymbol{G}_{r}{ }^{0,298}=2 \times \Delta \boldsymbol{G}_{f}{ }^{0,298}\left(\mathrm{NO}_{2}(\mathrm{~g})\right)-$ $-\left[2 \times \Delta \boldsymbol{G}_{f}^{\boldsymbol{p}, 298}(\mathrm{NO}(\mathrm{g}))+1 \times \Delta \boldsymbol{G}_{f}{ }^{\boldsymbol{p}, 298}\left(\mathrm{O}_{2}(\mathrm{~g})\right)\right]=$
$=2(+51.3)-[2(+86.6)+1(0)]=-\mathbf{7 0 . 6} \mathbf{~ k J} / \mathbf{m o l}$
$\Delta G_{r}{ }^{\boldsymbol{o}, T}=-R T \ln K \Rightarrow \ln K=-\Delta G_{r}{ }^{,{ }^{, T} / R T}$
$K=e^{\frac{-\Delta G_{r}^{0, T}}{R T}}=e^{\frac{-(-70.6 \mathrm{~kJ} / \mathrm{mol})}{8.314 \times 10^{-3} \mathrm{KJJ} / \mathrm{mol} \cdot \mathrm{K} \times 298 \mathrm{~K}}}=2.4 \times \mathbf{1 0}^{12}=\boldsymbol{K}_{p}$
$\boldsymbol{K}_{\boldsymbol{p}} \gg 1 \Rightarrow$ the products are highly favored
$\Rightarrow \Delta \boldsymbol{G}_{r}$ is concentration dependent (depends on \boldsymbol{Q})
$\Rightarrow \Delta \boldsymbol{G}_{r}$ can be viewed as a difference between the free energy of the system at the current concentrations of reactants and products, \boldsymbol{Q}, and that at equilibrium, \boldsymbol{K}
$>$ At standard-state conditions, all concentrations and pressures are equal to $\mathbf{1}$, so $\boldsymbol{Q}=\mathbf{1}$ and $\Delta \boldsymbol{G}_{r}=\Delta \boldsymbol{G}_{r}{ }^{\boldsymbol{}}$ $\Rightarrow \Delta G_{r}^{o, T}=R T \ln 1-R T \ln K=0-R T \ln K$

$$
\Delta G_{r}^{o, T}=-R T \ln K
$$

\rightarrow The equation is used to calculate $\Delta \boldsymbol{G}^{o}$ from \boldsymbol{K} and vice versa
$>$ If $\boldsymbol{K}>\mathbf{1} \rightarrow \Delta \boldsymbol{G}^{0}<\mathbf{0} \rightarrow$ products are favored at equilibr.
$>$ If $\boldsymbol{K}<\mathbf{1} \rightarrow \Delta \boldsymbol{G}^{o}>\mathbf{0} \rightarrow$ reactants are favored at equilibr.
$>$ If $\boldsymbol{K}=\mathbf{1} \rightarrow \Delta \boldsymbol{G}^{o}=\mathbf{0}$
$>$ Combining $\Delta G_{r}{ }^{T}=\boldsymbol{R} \boldsymbol{T} \ln Q-\boldsymbol{R} \boldsymbol{T} \ln K$
with $\Delta \boldsymbol{G}_{r}, \boldsymbol{T}=-\boldsymbol{R} \boldsymbol{T} \ln K$ leads to:

$$
\Delta G_{r}^{T}=\Delta G_{r}^{o, T}+R T \ln Q
$$

\rightarrow The equation is used to calculate $\Delta \boldsymbol{G}_{r}{ }^{T}$ for any nonstandard state from $\Delta \boldsymbol{G}_{r}{ }^{\boldsymbol{0}, \boldsymbol{T}}$ for the respective standard state both at temperature, \boldsymbol{T}, and the reaction quotient of the nonstandard state, \boldsymbol{Q}
$\rightarrow \Delta G_{r}{ }^{o, T}$ is calculated as $\Delta \boldsymbol{G}_{r}{ }^{0, T}=\Delta \boldsymbol{H}_{r}{ }^{o}-\boldsymbol{T} \Delta \boldsymbol{S}_{r}{ }^{o}$
$\rightarrow R=8.314 \times 10^{-3} \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{K}$
$\rightarrow \boldsymbol{T}$ is the same for all quantities in the equation $\Rightarrow \Delta \boldsymbol{G}_{r}{ }^{T}$ is associated with a certain composition (Q) and a certain temperature (\boldsymbol{T})

Example: Calculate the free energy change for the reaction $\mathbf{H}_{\mathbf{2}}(\mathrm{g})+\mathbf{I}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{2 H I}(\mathrm{g})$ at $\mathbf{5 0 0} \mathrm{K}$ if the partial pressures of $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI are $\mathbf{1 . 5}, \mathbf{0 . 8 8}$ and 0.065 atm , respectively.
\rightarrow Nonstandard state at $500 \mathrm{~K}\left(\Delta \boldsymbol{G}_{r}{ }^{500}=\right.$? $)$
\rightarrow Calculate $\Delta \boldsymbol{G}_{r}{ }^{0,500}$ as $\Delta \boldsymbol{G}_{r}{ }^{0, T}=\Delta \boldsymbol{H}_{r}{ }^{o}-\boldsymbol{T} \Delta \boldsymbol{S}_{r}{ }^{o}$
$\rightarrow \Delta \boldsymbol{H}_{r}{ }^{0}=2 \times \Delta \boldsymbol{H}_{f}{ }^{o}(\mathrm{HI}(\mathrm{g}))-$
$-\left[1 \times \Delta \boldsymbol{H}_{f}{ }^{o}\left(\mathrm{H}_{2}(\mathrm{~g})\right)+1 \times \Delta \boldsymbol{H}_{f}{ }^{o}\left(\mathrm{I}_{2}(\mathrm{~g})\right)\right]=$
$=2(+25.9)-[1(0)+1(+62.4)]=\mathbf{- 1 0 . 6} \mathbf{~ k J}$
$\rightarrow \Delta \boldsymbol{S}_{r}{ }^{o}=2 \times \boldsymbol{S}^{\boldsymbol{o}}(\mathrm{HI}(\mathrm{g}))-\left[1 \times \boldsymbol{S}^{o}\left(\mathrm{H}_{2}(\mathrm{~g})\right)+1 \times \boldsymbol{S}^{o}\left(\mathrm{I}_{2}(\mathrm{~g})\right)\right]=$ $=2(206)-[1(131)+1(261)]=+\mathbf{2 0} \mathbf{J} / \mathbf{K}$
$\rightarrow \Delta \boldsymbol{G}_{r}{ }^{\boldsymbol{0}, 500}=-10.6 \mathrm{~kJ}-500 \mathrm{~K} \times(0.020 \mathrm{~kJ} / \mathrm{K})=\mathbf{- 2 0 . 6} \mathbf{k J}$

Deriving the van't Hoff Equation

> The van't Hoff equation gives the temperature dependence of the equilibrium constant
$\Delta G_{r}^{o, T}=-R T \ln K \mid-R T \ln K=\Delta H_{r}^{o}-T \Delta S_{r}^{o}$
$\Delta \boldsymbol{G}_{r}^{o, T}=\Delta H_{r}^{o}-T \Delta S_{r}^{o}$

$$
-\ln K=\frac{\Delta H_{r}^{o}}{R T}-\frac{\Delta S_{r}^{o}}{R}
$$

$>$ If the equation is applied for two different \boldsymbol{T} s, and $\Delta \boldsymbol{H}_{r}{ }^{\boldsymbol{o}}$ and $\Delta \boldsymbol{S}_{r}{ }^{o}$ are assumed independent of \boldsymbol{T}

$$
\rightarrow \ln \frac{K_{2}}{K_{1}}=-\frac{\Delta H_{r}^{o}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)
$$

$$
\begin{aligned}
& \quad Q_{p}=\frac{P_{H I}^{2}}{P_{H_{2}} P_{I_{2}}}=\frac{(0.065)^{2}}{1.5 \times 0.88}=3.2 \times 10^{-3} \\
& \Delta G_{r}^{500}=\Delta G_{r}^{0,500}+R \times 500 \mathrm{~K} \times \ln Q \\
& =-20.6 \frac{\mathrm{~kJ}}{\mathrm{~mol}}+8.314 \times 10^{-3} \frac{\mathrm{~kJ}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 500 \mathrm{~K} \times \ln \left(3.2 \times 10^{-3}\right) \\
& =-\mathbf{2 0 . 6} \frac{\mathrm{kJ}}{\mathrm{~mol}}-23.9 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \Rightarrow \Delta G_{r}^{\text {500 }}=-44.5 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \Rightarrow \Delta G_{r}^{\text {so0 }}<\mathbf{0} \\
& \Rightarrow \text { The reaction is spontaneous at this nonstandard } \\
& \text { state and } 500 \mathrm{~K}
\end{aligned}
$$

$>$ A plot of $-\boldsymbol{l n} \boldsymbol{K}$ versus $\mathbf{1} / \boldsymbol{T}$ gives a straight line with a Slope $=\Delta \boldsymbol{H}_{r}{ }^{o} / \boldsymbol{R}$ and Intercept $=-\Delta \boldsymbol{S}_{r}{ }^{o} / \boldsymbol{R}$
$>$ Allows the experimental determination of $\Delta \boldsymbol{H}_{r}{ }^{\boldsymbol{o}}$ and $\Delta \boldsymbol{S}_{r}{ }^{\circ}$ from measurements of \boldsymbol{K} at different $\boldsymbol{T} \mathrm{s}$

