Electrochemistry

- Electrochemistry deals with the relationship between chemical change and electricity
- Electrochemical cells (two types)
 - Galvanic cells use a spontaneous ($\Delta G < 0$) reaction to produce electricity (batteries)
 - Electrolytic cells use a source of electricity to drive a non-spontaneous ($\Delta G > 0$) reaction (electrolysis)

21.1 Redox Half-Reactions

- Redox reactions involve e- transfer
 - -**Oxidation** loss of **e**⁻ (oxidation state \uparrow)

- **Reduction** - gain of e^{-} (oxidation state \downarrow)

Balancing Redox Reactions

- Half-reaction method divides the overall reaction into two half-reactions
- Balancing in acidic solutions
 - 1. Identify the redox couples and write the half-reactions
 - 2. Balance each half-reaction separately:
 - > 1st, balance all elements other than O and H
 - $> 2^{nd}$, balance **O** by adding H_2O
 - > 3rd, balance **H** by adding **H**⁺
 - > 4th, balance the **charge** by adding e⁻
 - 3. Multiply the half-reactions by integers to equal the # of e⁻ in them
 - 4. Add the half-reactions and cancel the e-

Half-reactions – focus on oxidation and reduction separately
Example: Ca(s) + Cl₂(g) → CaCl₂(s)
→CaCl₂(s) consists of Ca²⁺ and Cl⁻ ions
(a(s) → Ca²⁺(s) + 2e⁻ (loss of 2e⁻, oxidation))
(Cl₂(g) + 2e⁻ → 2Cl⁻(s) (gain of 2e⁻, reduction))
(a(s) + Cl₂(g) + 2e⁻ → Ca²⁺(s) + 2e⁻ + 2Cl⁻(s))
→Adding the half-reactions gives the overall reaction
→Ca is oxidized (Ca is the reducing agent)
→Cl₂ is reduced (Cl₂ is the oxidizing agent)
> Generalized expressions for half reactions:
> Red → Ox + ne⁻ or Ox + ne⁻ → Red
> Ox/Red form a redox couple (Ex: Ca²⁺/Ca; Cl₂/Cl⁻)

Example: Balance the following skeleton equation in acidic solution: $V^{3+} + Ce^{4+} \rightarrow VO_2^{+} + Ce^{3+}$ 1. Redox couples: VO_2^+/V^{3+} and Ce^{4+}/Ce^{3+} Half-reactions: $V^{3+} \rightarrow VO_2^+$ and $Ce^{4+} \rightarrow Ce^{3+}$ 2. $V^{3+} \rightarrow VO_2^+$ (V is balanced) $V^{3+} + 2H_2O \rightarrow VO_2^+$ (balance O) $V^{3+} + 2H_2O \rightarrow VO_2^+ + 4H^+$ (balance H) \rightarrow V³⁺ + 2H₂O \rightarrow VO₂⁺ + 4H⁺ + 2e⁻ (balance charge) $Ce^{4+} \rightarrow Ce^{3+}$ (Ce, O and H are balanced) $\rightarrow Ce^{4+} + 1e^{-} \rightarrow Ce^{3+}$ (balance charge) **3.** Multiply the 2nd half-reaction by 2 to get 2e⁻ $2Ce^{4+} + 2e^{-} \rightarrow 2Ce^{3+}$

4. Add the half-reactions
$ V^{3+} + 2H_2O \rightarrow VO_2^+ + 4H^+ + 2e^-$
$(\pm) 2Ce^{4+} + 2e^{-} \rightarrow 2Ce^{3+}$
$V^{3+} + 2H_2O + 2Ce^{4+} + 2e^{-} \rightarrow VO_2^{+} + 4H^{+} + 2e^{-} + 2Ce^{3+}$
$\Rightarrow V^{3+} + 2Ce^{4+} + 2H_2O \rightarrow VO_2^+ + 2Ce^{3+} + 4H^+$
Note: If H_3O^+ is required in the equation instead of H^+ , add as many water molecules on both sides as the # of H^+ ions
$\Rightarrow V^{3+} + 2Ce^{4+} + 6H_2O \rightarrow VO_2^+ + 2Ce^{3+} + 4H_3O^+$
 Balancing in basic solutions
- The same four steps are used plus a fifth step:
5. Add OH ⁻ on both sides of the equation in order to neutralize the H ⁺ , and cancel the water molecules if necessary

3. Multiply the 1st half-reaction by 2 and the 2nd by 3 to get 6^{e⁻} in both half-reactions $\bigoplus \begin{array}{l} 2CrO_2^{-} + 4H_2O \rightarrow 2CrO_4^{2-} + 8H^+ + 6e^- \\ 3BrO_4^{-} + 6H^+ + 6e^- \rightarrow 3BrO_3^{-} + 3H_2O \end{array}$ 4. Add the half-reactions $2CrO_2^{-} + 4H_2O + 3BrO_4^{-} + 6H^+ + 6e^- \rightarrow \\ \rightarrow 2CrO_4^{2-} + 8H^+ + 6e^- + 3BrO_3^{-} + 3H_2O \end{array}$ $\Rightarrow 2CrO_2^{-} + 3BrO_4^{-} + H_2O \rightarrow 2CrO_4^{2-} + 3BrO_3^{-} + 2H^+$ 5. Add 2OH⁻ on both sides of the equation $2CrO_2^{-} + 3BrO_4^{-} + H_2O + 2OH^- \rightarrow 2H_2O \rightarrow 2CrO_4^{2-} + 3BrO_3^{-} + 2H^+ + 2OH^- \rightarrow 2CrO_4^{2-} + 3BrO_3^{-} + H_2O \rightarrow 2CrO_4^{2-} + 3BrO_3^{-} + H_2O \rightarrow 2CrO_4^{2-} + 3BrO_3^{-} + H_2O \rightarrow 2CrO_4^{2-} + 3BrO_3^{-} + 2H^+ + 2OH^- \rightarrow 2CrO_4^{2-} + 3BrO_3^{-} + 2H^+ + 2OH^- \rightarrow 2CrO_4^{2-} + 3BrO_3^{-} + H_2O \rightarrow 2CrO_4^{-} +$

Example: Balance the following skeleton equation in basic solution: $CrO_2^- + BrO_4^- \rightarrow CrO_4^{-2} + BrO_3^{-2}$ **1.** Redox couples: CrO_4^2/CrO_2^- and BrO_4^-/BrO_3^- Half-reactions: $CrO_2^- \rightarrow CrO_4^{2-}$ and $BrO_4^- \rightarrow BrO_3^-$ 2. $CrO_2^- \rightarrow CrO_4^{2-}$ (Cr is balanced) $CrO_{2}^{-} + 2H_{2}O \rightarrow CrO_{4}^{2-}$ (balance O) $CrO_2^- + 2H_2O \rightarrow CrO_4^{2-} + 4H^+$ (balance H) \rightarrow CrO₂⁻ + 2H₂O \rightarrow CrO₄²⁻ + 4H⁺ + 3e⁻ (balance charge) $BrO_4^- \rightarrow BrO_2^-$ (Br is balanced) $BrO_4^- \rightarrow BrO_3^- + H_2O$ (balance O) $BrO_4^- + 2H^+ \rightarrow BrO_2^- + H_2O$ (balance H) $\rightarrow BrO_4^- + 2H^+ + 2e^- \rightarrow BrO_3^- + H_2O$ (balance charge)

21.2 Galvanic (Voltaic) Cells
Produce electricity from a spontaneous chemical reaction

Example: Zn metal reacts spontaneously with Cu²⁺ solutions to yield metallic Cu and Zn²⁺ ions
Zn(s) + Cu²⁺ → Zn²⁺ + Cu(s) (SO₄²⁻ counter ions)
→The two half-reactions are:
Zn(s) → Zn²⁺ + 2e⁻ (oxidation)
Cu²⁺ + 2e⁻ → Cu(s) (reduction)

→The two half-reactions can be physically separated by placing them in separate containers (half-cells)
→Half-cells → where the half-reactions occur
→Anode half-cell → where oxidation occurs
→Cathode half-cell → where reduction occurs

- Electrodes in contact with the electrolyte solutions and the external electrical circuit
 - Anode (oxidation)
 - Cathode (reduction)
 - In voltaic cells, the **anode** is (-) and the **cathode** is (+)
 - \bullet The $e\mbox{-s}$ flow from the anode toward the cathode
- Salt bridge completes the electrical circuit and maintains electrical neutrality of the half-cells (porous material soaked in a concentrated electrolyte solution)
 - Anions in the salt bridge flow toward the anode
 - Cations in the salt bridge flow toward the cathode
- By convention, the anode half-cell appears on the left