Galvanic Cell Notation

• Half-cell notation

- Different phases are separated by vertical lines
- Species in the same phase are separated by commas

• Types of electrodes

Active electrodes – involved in the electrode half-reaction (most metal electrodes)

Example: Zn²⁺/Zn metal electrode

 $Zn(s) \rightarrow Zn^{2+} + 2e^{-}$ (as oxidation)

Notation:

 $z + 2e^{-}$ (as oxidation) $Zn(s) | Zn^{2+}$

- Zn2+

Salt bridges are represented by double vertical lines

Example: Write the cell reaction and the cell
notation for a cell consisting of a graphite cathode
immersed in an acidic solution of MnO_4^- and Mn^{2+}
and a graphite anode immersed in a solution of Sn^{4+}
and Sn^{2+} . \rightarrow Write the half reactions (a list of the most common
half-reactions is given in Appendix D) \oplus $(mO_4^- + 8H^+ + 2e^-)$ $\times 5$ (oxidation)
 $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O(1)$ $\times 2$ (reduction)
 $5Sn^{2+} + 2MnO_4^- + 16H^+ + 10e^- \rightarrow 5Sn^{4+} + 10e^- + 2Mn^{2+} + 8H_2O(1)$ \rightarrow The graphite (C) electrodes are inactive \Rightarrow C(s) $|Sn^{2+}, Sn^{4+}||$ H⁺, MnO₄⁻, Mn^{2+}| C(s)

Why Do Galvanic Cells Work?

- Consider a cell made of two active metal electrodes, **M**₁ and **M**₂, and their ions.
 - If the cell circuit is open, the two metals are in equilibrium with their ions
 - 1) $\mathbf{M}_1 \leftrightarrow \mathbf{M}_1^+ + \mathbf{e}^-$ 2) $\mathbf{M}_2 \leftrightarrow \mathbf{M}_2^+ + \mathbf{e}^-$
 - The produced electrons accumulate in the metal electrodes and produce electrical potentials
 - If M₁ has a greater tendency to give out its electrons, the 1st equilibrium is shifted further to the right and the potential of M₁ is more negative
 - When the circuit is closed, electrons flow from the more negative M₁ (anode) toward the less negative M₂ (cathode)

21.3 Cell Potentials

- Electromotive force (*emf*) drives the electrons in the el. circuit
 - -*emf* is the difference between the electrical potentials of the two electrodes (voltage)
- Cell potential $(E_{cell}) \rightarrow E_{cell} = emf$
 - Units \rightarrow volts (V) \rightarrow (1 V = 1 J/C since the electrical work is equal to the applied voltage times the charge moving between the electrodes)
- Standard cell potential (E^o_{cell}) the cell potential at standard-state conditions (gases → 1 atm, solutions → 1 M, liquids & solids → pure)

Electrode potentials (E) – characterize the individual electrodes (half-reactions)
The cell potential is the difference between the electrode potentials of the cathode and anode

$$E_{cell} = E_{cathode} - E_{anode}$$

• Standard electrode potentials (*E*^{*o*}) – electrode potentials at the standard-state

$$E^{o}_{cell} = E^{o}_{cathode} - E^{o}_{anode}$$

- E^{o} values are reported for the half-reaction written as reduction (standard reduction potentials) \rightarrow listed in Appendix D

> Absolute values for *E* and *E^o* can't be measured
⇒ A reference electrode (half-cell) is needed
• The potentials of all electrodes are measured relative to the reference electrode
• Standard hydrogen electrode – used as a reference electrode → *E^o_{ref}* = 0 V (assumed)
IH⁺(1M) | H₂(g, 1atm) | Pt(s)
2H⁺(1M) + 2e⁻ → H₂(g, 1atm)
− To find the potential of any electrode, a cell is constructed between the unknown electrode and the reference electrode
− The cell potential is directly related to the

unknown electrode potential

– If the unknown electrode is the cathode of the cell $\rightarrow E^{o}_{cell} = E^{o}_{unkn} - E^{o}_{ref}$ $\rightarrow E^{o}_{unkn} = E^{o}_{cell} + E^{o}_{ref} = E^{o}_{cell} + 0 = E^{o}_{cell} > 0$ - If the unknown electrode is the anode of the cell $\rightarrow E^{o}_{cell} = E^{o}_{ref} - E^{o}_{unkn}$ $\rightarrow E^{o}_{unkn} = E^{o}_{ref} - E^{o}_{cell} = 0 - E^{o}_{cell} = -E^{o}_{cell} < 0$ **Example:** $Pt(s) | H_2(g, 1atm) | H^+(1M), Cl^-(1M) | AgCl(s) | Ag(s)$ $H_2(g)$ +0.22 V $H^+/H_2 \rightarrow anode$ 1 atm $Ag/AgCl \rightarrow cathode$ $E^{o}_{cell} = E^{o}_{Ag/AgCl} - E_{ref}$ 1MH+ 1MCI $=E^{o}_{Ag/AgCl}$ $E^{o}_{Ag/AgCl}$ = +0.22 V AgCI(s)