Determination of Electrode Potentials

• Electrode potentials can be determined by measurements versus the standard H-electrode or other electrodes with known potentials

Example: E^{o}_{cell} = +0.46 V for the reaction:

 $Cu(s) + 2Ag^+ \rightarrow Cu^{2+} + 2Ag(s)$ If $E^o = +0.34$ V for the Cu²⁺/Cu redox couple, what is E^o for the Ag⁺/Ag redox couple?

 \rightarrow Split into half-reactions:

 $Cu(s) \rightarrow Cu^{2+} + 2e^{-} \qquad E^{o}{}_{Cu} = +0.34 \text{ V} \text{ (anode, ox)}$ $Ag^{+} + e^{-} \rightarrow Ag(s) \qquad E^{o}{}_{Ag} = ??? \text{ V} \text{ (cathode, red)}$ $E^{o}{}_{cell} = E^{o}{}_{Ag} - E^{o}{}_{Cu} = E^{o}{}_{Ag} - (+0.34) = +0.46$ $\Rightarrow E^{o}{}_{Ag} = +0.46 + (+0.34) = +0.80 \text{ V}$

Strengths of Oxidizing and Reducing Agents

• *E^o* values are always tabulated for **reduction**

 $Ox + ne^- \rightarrow Red$

– Ox is an oxidizing agent; Red is a reducing agent

 (E^{o})

- *E*^{*o*} is a measure for the tendency of the half-reaction to undergo reduction
- \Rightarrow Higher (more positive) E^o means
 - Greater tendency for reduction
 - Lower tendency for oxidation
- \Rightarrow Higher (more positive) E^{o} means
 - Stronger oxidizing agent $(Ox) \leftarrow Ox$ is reduced
 - Weaker reducing agent (Red) ← Red is oxidized

Using Cell Potentials in Calculations

- Cell potentials are **additive**
 - If two reactions are added, their potentials are added too
- Cell potentials are **intensive properties** remain independent of the system size
 - If a reaction (or a half-reaction) is multiplied by a number, its potential remains the same

Example:

$(\times 3)$ $E^{o}_{cell} = +0.46 \text{ V}$	$Cu(s) + 2Ag^+ \rightarrow Cu^{2+} + 2Ag(s)$	
$(\times 2)$ $E^{o}_{cell} = +0.70 \text{ V}$	$3Ag(s) + Au^{3+} \rightarrow 3Ag^{+} + Au(s)$	
$\boxed{3\mathrm{Cu}(\mathrm{s}) + 2\mathrm{Au}^{3+} \rightarrow 3\mathrm{Cu}^{2+} + 2\mathrm{Au}(\mathrm{s})}$		
0.46 + 0.70 = +1.16 V	$E^{o}_{cell} = +$	
(s)	$\boxed{3\mathrm{Cu}(\mathrm{s}) + 2\mathrm{Au}^{3+} \rightarrow 3\mathrm{Cu}^{2+} + 2\mathrm{Au}^{3+}}_{\mathrm{Cu}^{2+}} = 3\mathrm{Cu}^{2+} + 2\mathrm{Au}^{3+}}_{\mathrm{Cu}^{2+}} = 3\mathrm{Cu}^{2+} + 2\mathrm{Au}^{3+}}_{\mathrm{Cu}^{2+}} = 3\mathrm{Cu}^{2+} + 2\mathrm{Au}^{3+}_{\mathrm{Cu}^{2+}} = 3\mathrm{Cu}^{2+}_{\mathrm{Cu}^{2+}} = 3\mathrm{Cu}^{2+$	

- Electrochemical series an arrangement of the redox couples in order of decreasing reduction potentials (*E^o*) → Appendix D
 - The most positive E^{o} s are at the top of the table
 - The most negative *E*^os are at the bottom of the table
- ⇒The strongest oxidizing agents (Ox) are at the top of the table as reactants
- ⇒The strongest reducing agents (Red) are at the **bottom** of the table as products
- Every redox reaction is a sum of two half-reactions, one occurring as oxidation and another as reduction

 $\frac{\operatorname{Red}_{1} \to \operatorname{Ox}_{1} + ne^{-} \qquad \operatorname{Ox}_{2} + ne^{-} \to \operatorname{Red}_{2}}{\operatorname{Red}_{1} + \operatorname{Ox}_{2} \to \operatorname{Ox}_{1} + \operatorname{Red}_{2}}$

• In a spontaneous redox reaction, the stronger oxidizing and reducing agents react to produce the weaker oxidizing and reducing agents

Stronger Red_1 + Stronger $\operatorname{Ox}_2 \rightarrow$ Weaker Ox_1 + Weaker Red_2

Example: Given the following half-reactions:

$\Box Cl_2(g) + 2e^- \rightarrow 2Cl^-$	$E^{o} = +1.36 \text{ V}$
$\underset{\leftarrow}{\stackrel{\times}{\to}} O_2(g) + 4H^+ + 4e^- \rightarrow 2H_2O(l)$	$E^{o} = +1.23 \text{ V}$
$\begin{bmatrix} \overline{b} \\ c \end{bmatrix} \mathbf{F} \mathbf{e}^{3+} + \mathbf{e}^{-} \rightarrow \mathbf{F} \mathbf{e}^{2+}$	$E^{o} = +0.77 \text{ V}$
$ \begin{array}{c} \underset{\scriptstyle \text{V}}{\overset{\scriptstyle \text{I}}{\overset{\scriptstyle \text{U}}{\overset{\scriptstyle \text{U}}}{\overset{\scriptstyle \text{U}}{\overset{\scriptstyle \text{U}}{\overset{\scriptstyle \text{U}}{\overset{\scriptstyle \text{U}}{\overset{\scriptstyle \text{U}}{\overset{\scriptstyle \text{U}}{\overset{\scriptstyle \text{U}}}{\overset{\scriptstyle \text{U}}{\overset{\scriptstyle \text{U}}}{\overset{\scriptstyle \text{U}}{\overset{\scriptstyle \text{U}}{\overset{\scriptstyle \text{U}}{\overset{\scriptstyle \text{U}}}{\overset{\scriptstyle \text{U}}{\overset{\scriptstyle \text{U}}}{\overset{\scriptstyle {\scriptstyle \text{U}}}{\overset{\scriptstyle \text{U}}}{\overset{\scriptstyle \text{U}}{\overset{\scriptstyle \text{U}}}{\overset{\scriptstyle {\scriptstyle \text{U}}}{\overset{\scriptstyle {\scriptstyle U}}{\overset{\scriptstyle {\scriptstyle U}}{\overset{\scriptstyle {\scriptstyle U}}{\overset{\scriptstyle {\scriptstyle U}}}{\overset{\scriptstyle {\scriptstyle U}}{\overset{\scriptstyle {\scriptstyle U}}{\overset{\scriptstyle {\scriptstyle U}}{\overset{\scriptstyle {\scriptstyle U}}{\overset{\scriptstyle \scriptstyle \\ \scriptstyle \overset{\scriptstyle \\}}{\overset{\scriptstyle {\scriptstyle U}}}{\overset{\scriptstyle {\scriptstyle U}}{\overset{\scriptstyle {\scriptstyle U}}{\overset{\scriptstyle {\scriptstyle U}}}{\overset{\scriptstyle {\scriptstyle U}}{\overset{\scriptstyle \scriptstyle \\}}}{\overset{\scriptstyle {\scriptstyle U}}{\overset{\scriptstyle \scriptstyle \\}}{\overset{\scriptstyle {\scriptstyle U}}{\overset{\scriptstyle \scriptstyle \\}}}{\overset{\scriptstyle {\scriptstyle U}}{\overset{\scriptstyle \scriptstyle \\}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$E^{o} = -0.44 \text{ V}$

a) Rank the oxidizing and reducing agents by strength \rightarrow Ox agents on the left; Red agents on the right Oxidizing \rightarrow (Top) $Cl_2 > O_2 > Fe^{3+} > Fe^{2+}$ (Bottom) Reducing \rightarrow (Bottom) $Fe > Fe^{2+} > H_2O > Cl^-$ (Top)

d) Is the reaction of disproportionation (simultaneous oxidation and reduction) of Fe^{2+} to Fe^{3+} and Fe(s)spontaneous at standard conditions?

- \rightarrow Need the sign of E^{o}_{cell}
- \Rightarrow Fe²⁺/Fe(s) undergoes reduction
- \Rightarrow Fe³⁺/Fe²⁺ undergoes oxidation (reverse equation)

$$e^{2+} + 2e^- \rightarrow Fe(s)$$
 (reduction) $E^o = -0.44$

 $Fe^{2+} + 2e^{-} \rightarrow Fe(s) \qquad (1 \text{ current}) = Fe^{2+} \rightarrow Fe^{3+} + e^{-} \qquad \times 2 \quad (\text{oxidation}) \quad E^{o} = +0.77 \text{ V}$

 $3Fe^{2+} + 2e^{-} \rightarrow Fe(s) + 2Fe^{3+} + 2e^{-}$

 $E^{o}_{cell} = E^{o}_{cath} - E^{o}_{anod} = -0.44 - (+0.77) = -1.21 \text{ V}$

 $\Rightarrow E^{o}_{cell} < 0 \rightarrow$ the reaction is **non-spontaneous** at standard conditions

b) Can Cl₂ oxidize H₂O to O₂ in acidic solution?

$$\rightarrow$$
 Cl₂/Cl⁻ has higher E^{o} (Cl₂/Cl⁻ is above O₂,H⁺/H₂O)
 \Rightarrow Cl₂ is a stronger oxidizing agent than O₂
 \Rightarrow Cl₂ can oxidize H₂O to O₂ at standard conditions
c) Write the spontaneous reaction between the Cl₂/Cl⁻
and Fe³⁺/Fe²⁺ redox couples and calculate its E^{o}_{cell}
 \rightarrow Cl₂/Cl⁻ has the higher reduction potential (E^{o})
 \Rightarrow Cl₂/Cl⁻ undergoes reduction
 \Rightarrow Fe³⁺/Fe²⁺ undergoes oxidation (reverse equation)
 $(+ Cl_2(g) + 2e^- \rightarrow 2Cl^- (reduction) E^{o} = +1.36 V$
 $E^{o} = +0.77 V$
 $Cl_2(g) + 2e^2 + 2Fe^{2+} \rightarrow 2Cl^- + 2Fe^{3+} + 2e^2$
 $E^{o}_{cell} = E^{o}_{cath} - E^{o}_{anod} = +1.36 - (+0.77) = +0.59 V$

Relative Reactivity of Metals	
• The activity series of metals – ranks metals based on their ability to displace H_2 from acids or water or displace each other's ions in solution	
• Metals that can displace H ₂ from acids	
– The reduction of H^+ from acids to H_2 is given by the standard hydrogen half-reaction	
$2\mathrm{H}^+ + 2\mathrm{e}^- \rightarrow \mathrm{H}_2(\mathrm{g}) \qquad E^o = 0 \mathrm{V}$	
- In order for this half-reaction to proceed as written, the metal must have lower reduction potential (the metal must be below H_2/H^+ in Appendix D)	
\Rightarrow If $E^{o}_{metal} < 0$, the metal can displace H ₂ from acids	
\Rightarrow If $E^{o}_{metal} > 0$, the metal cannot displace H ₂	

Example: Can Fe and Cu be dissolved in HCl(aq)? \rightarrow Fe²⁺/Fe is below and Cu²⁺/Cu is above H₂/H⁺ $\stackrel{2H^+ + 2e^- \rightarrow H_2(g) (reduction) E^o = 0.00 V}{Fe(s) \rightarrow Fe^{2+} + 2e^- (oxidation) E^o = -0.44 V}$ $2H^+ + 2e^- + Fe(s) \rightarrow H_2(g) + Fe^{2+} + 2e^ E^o_{cell} = E^o_{cath} - E^o_{anod} = 0.00 - (-0.44) = +0.44 V$ $\Rightarrow E^o_{cell} > 0 \rightarrow$ spontaneous (Fe dissolves in HCl) $\stackrel{2H^+ + 2e^- \rightarrow H_2(g) (reduction) E^o = 0.00 V}{Cu(s) \rightarrow Cu^{2+} + 2e^- (oxidation) E^o = +0.34 V}$ $2H^+ + 2e^- + Cu(s) \rightarrow H_2(g) + Cu^{2+} + 2e^ E^o_{cell} = E^o_{cath} - E^o_{anod} = 0.00 - (+0.34) = -0.34 V$ $\Rightarrow E^o_{cell} < 0 \rightarrow$ non-spontaneous (Cu doesn't dissolve) • Metals that can displace H₂ from water - The reduction of H₂O to H₂ is given by: $2H_2O(1) + 2e^- \rightarrow H_2(g) + 2OH^-$ E = -0.42 V- The value of *E* is for pH = 7 (nonstandard state) \Rightarrow Metals that are **below** H₂O/H₂,OH⁻ in Appendix D can displace H₂ from water at standard conditions \Rightarrow Metals that have $E^{o}_{metal} < -0.42$ can displace H₂ from water at pH = 7**Example:** Potassium, **K**, dissolves readily in water $2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-$ (reduction) E = -0.42 V $K(s) \rightarrow K^+ + e^ \times 2$ (oxidation) $E^{o} = -2.93 \text{ V}$ $2H_2O(1) + 2e^2 + 2K(s) \rightarrow H_2(g) + 2OH^2 + 2K^2 + 2e^2$ $E_{coll}^{o} = -0.42 - (-2.93) = +2.51 \text{ V} > 0$ (spontaneous)