

 $\begin{array}{l} \bigoplus \mathbf{Cr^{3+} + e^{-} \rightarrow \mathbf{Cr^{2+}}} \\ \bigoplus \mathbf{Cr^{3+} + e^{-} \rightarrow \mathbf{Cr^{2+}}} \\ \cong \mathbf{Cr^{3+} + 2e^{-} + 2Br^{-} \rightarrow 2\mathbf{Cr^{2+} + Br_2(l) + 2e^{-}} \\ \longrightarrow \mathbf{Calculate} \ E^{o}_{cell} \\ E^{o}_{cell} = E^{o}_{cath} - E^{o}_{anod} = -0.41 - (+1.06) = -1.47 \text{ V} \\ \longrightarrow \mathbf{Calculate} \ \Delta G_r^{o} (n = 2 \rightarrow \# \text{ mol } e^{-} \text{ in overall eq.}) \\ \Delta G_r^{o} = -nFE^{o}_{cell} = -(2 \text{ mol}) \times (96485 \text{ C/mol}) \times (-1.47 \text{ V}) \\ \Delta G_r^{o} = 2.84 \times 10^5 \text{ C} \cdot \text{V} = 2.84 \times 10^5 \text{ J} = \pm 284 \text{ kJ} \\ \Longrightarrow \Delta G_r^{o} > 0 \text{ and } E^{o}_{cell} < 0 \rightarrow \text{ the reaction is non-spontaneous at standard conditions} \\ \end{array}$

 $\begin{array}{c|c} -\Delta G_r, \Delta G_r^{\ o}, E_{cell}, \text{ and } E^o_{cell} \text{ are all dependent on } T \\ (\text{superscripts, } T, \text{ are omitted for simplicity}) \\ -\Delta G_r, \Delta G_r^{\ o} \text{ are extensive properties} \\ -E_{cell}, E^o_{cell}, E, \text{ and } E^o \text{ are intensive properties} \\ \Rightarrow \text{ If a redox equation is multiplied by a number, } \Delta G \\ \text{ is also multiplied, but } E \text{ is not} \\ \text{Example: Using } E^o \text{ values from appendix D,} \\ \text{ calculate } \Delta G_r^{\ o} \text{ at } 298 \text{ K for the reaction:} \\ 2Cr^{3+} + 2Br^- \rightarrow 2Cr^{2+} + Br_2(I) \\ \Rightarrow \text{ Find the redox couples in Appendix D (298 \text{ K}):} \\ Cr^{3+} + e^- \rightarrow Cr^{2+} \qquad E^o = -0.41 \text{ V} \\ Br_2(I) + 2e^- \rightarrow 2Br^- \qquad E^o = +1.06 \text{ V} \\ \rightarrow \text{ Invert the } 2^{\text{nd}} \text{ half-reaction to match the overall eq.} \end{array}$

Relationship Between E_{cell}^{o} and K• From $\Delta G_{r}^{o} = -nFE_{cell}^{o}$ and $\Delta G_{r}^{o} = -RT \ln K$ $\rightarrow -nFE_{cell}^{o} = -RT \ln K$ $\Rightarrow E_{cell}^{o} = \frac{RT}{nF} \ln K$ $K = e^{\frac{nFE_{cell}^{o}}{RT}}$ $\rightarrow At 298 \text{ K}, RT/F = 0.0257 \text{ V}$ $\Rightarrow E_{cell}^{o} = \frac{0.0257}{n} \ln K$ $K = e^{\frac{nE_{cell}^{o}}{0.0257}}$ $\rightarrow \ln K = 2.303 \times \log K$ and $0.0257 \times 2.303 = 0.0592$ $\Rightarrow E_{cell}^{o} = \frac{0.0592}{n} \log K$ $K = 10^{\frac{nE_{cell}^{o}}{0.0592}}$ **Example:** Using *E*^{*o*} values from appendix D, calculate *K* at 298 K for the reaction:

 $2\mathbf{Cr}^{2+} + \mathbf{Br}_{2}(\mathbf{I}) \rightarrow 2\mathbf{Cr}^{3+} + 2\mathbf{Br}^{-}$ $\rightarrow \text{ This is the reverse of the reaction in the previous example (} E^{o}_{cell} = -1.47 \text{ V from previous example})$ $\rightarrow E_{reverse} = -E_{forward}$ $\Rightarrow E^{o}_{cell} = -(-1.47 \text{ V}) = +1.47 \text{ V and } n = 2$ $\Rightarrow K = e^{\frac{nE_{cell}^{o}}{0.0257}} = e^{\frac{2\times1.47}{0.0257}} = 4.8 \times 10^{49}$ $\rightarrow E^{o}_{cell} > 0 \rightarrow \text{ the reaction is spontaneous at standard conditions}$

 $\rightarrow K >> 1 \rightarrow$ the products are favored at equilibrium

Example: Calculate K_{sp} of PbSO₄ at 298 K. PbSO₄(s) \rightarrow Pb²⁺ + SO₄²⁻ $K_{sp} = ?$ \rightarrow Not a redox reaction, but it can be represented as a sum of two redox half-reactions PbSO₄(s) + 2e⁻ \rightarrow Pb(s) + SO₄²⁻ (reduction) $E^o = -0.36$ V Pb(s) \rightarrow Pb²⁺ + 2e⁻ (oxidation) $E^o = -0.13$ V PbSO₄(s) + 2e² + Pb(s) \rightarrow Pb(s) + SO₄²⁻ + Pb²⁺ + 2e² $E^o_{cell} = E^o_{cath} - E^o_{anod} = -0.36 - (-0.13) = -0.23$ V $\Rightarrow K_{sp} = e^{\frac{nE_{cell}^o}{0.0257}} = e^{\frac{2\times(-0.23)}{0.0257}} = 1.7 \times 10^{-8}$ $\Rightarrow E^o_{cell} < 0 \rightarrow$ the dissolution of PbSO₄ is nonspontaneous at 298 K ($K_{sp} << 1$)

• Concentration cell – contains the same redox
couple in both the anode and cathode half-cells
– The anode and cathode are the same
$$\Rightarrow E^{o}_{cell} = E^{o}_{cathode} - E^{o}_{anode} = 0$$

– The concentrations of the components are different in
the two half-cells $\Rightarrow E_{cell} = 0 - (RT/nF) \ln Q \neq 0$
Example: Cu²⁺/Cu concentration cell ($E^{o}_{Cu} = 0.34 \text{ V}$)
 $\oplus Cu^{2+}(1.0 \text{ M}) + 2e^{-} \rightarrow Cu(s)$ (cathode, reduction)
 $\oplus Cu(s) \rightarrow Cu^{2+}(0.1 \text{ M}) + 2e^{-}$ (anode, oxidation)
 $\overline{Cu^{2+}(1.0 \text{ M}) + 2e^{-} + Cu(s)} \rightarrow Cu(s) + Cu^{2+}(0.1 \text{ M}) + 2e^{-}}$
 $E^{o}_{cell} = E^{o}_{Cu} - E^{o}_{Cu} = +0.34 - (+0.34) = 0 \text{ V}$

 E_{cell} in Relation to Q and K \gg From $E_{cell} = E^o_{cell} - (RT/nF) \ln Q$: \Rightarrow If Q < 1 (more reactants), $\ln Q < 0$, and $E_{cell} > E^o_{cell}$ \Rightarrow If Q > 1 (more products), $\ln Q > 0$, and $E_{cell} < E^o_{cell}$ \Rightarrow If Q = 1 (standard state), $\ln Q = 0$, and $E_{cell} = E^o_{cell}$ \Rightarrow Combining $E_{cell} = E^o_{cell} - (RT/nF) \ln Q$ with $E^o_{cell} = (RT/nF) \ln K$ leads to: $\rightarrow E_{cell} = (RT/nF) \ln K - (RT/nF) \ln Q$ \Rightarrow If Q < K, $E_{cell} > 0 \rightarrow$ forward reaction is spontaneous \Rightarrow If Q > K, $E_{cell} < 0 \rightarrow$ reverse reaction is spontaneous \Rightarrow If Q = K, $E_{cell} = 0 \rightarrow$ reaction is at equilibrium

• **Ion-selective** electrodes – have potentials that are directly related to the concentration of specific ions such as H⁺ (*pH*), K⁺, F⁻, Cl⁻, Br⁻, ...

Example: Calculate the *pH* of a solution in which the potential of the $H^+ | H_2(g, 1atm) | Pt$ electrode is E = -0.15 V.

 $2H^{+} + 2e^{-} \rightarrow H_{2}(g, 1atm) \qquad E^{o} = 0.00 \text{ V}$ $Q = \frac{P_{H_{2}}}{[H^{+}]^{2}} = \frac{1 \text{ atm}}{[H^{+}]^{2}} \qquad n = 2$ $E = E^{o} - \frac{0.0592}{n} \log Q = 0 - \frac{0.0592}{2} \log \left(\frac{1}{[H^{+}]^{2}}\right)$

$$E = -\frac{0.0592}{2} \log\left(\frac{1}{[\mathrm{H}^+]^2}\right) = -\frac{0.0592}{2} \log [\mathrm{H}^+]^{-2}$$
$$E = -\frac{(-2) \times 0.0592}{2} \log [\mathrm{H}^+] = -0.0592 \, pH$$
$$\Rightarrow pH = \frac{E}{-0.0592} = \frac{-0.15}{-0.0592} = 2.5$$

- The potential of an ion-selective electrode is measured by combining it in a cell with a reference electrode having a well known and constant electrode potential such as the calomel (Hg/Hg₂Cl₂/Cl⁻) or the Ag/AgCl/Cl⁻ electrodes
- Optionally, the ion-selective electrode can be operated in a concentration cell with the same electrode immersed in a solution with known concentration as a reference