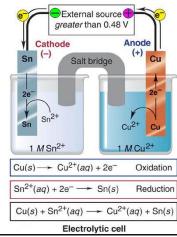


21.6 Corrosion	
• Unwanted oxidation of metal	ls in the environment
– If the metal (M) is in contact v	
Cathode, reduction:	
$ 2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-$	$E^{o} = -0.83 \text{ V}$
$(\text{at } pH = 7) \rightarrow$	E = -0.42 V
Anode, oxidation:	
$M(s) \rightarrow M^{n+} + ne^{-}$	$E^{o} < -0.42 \text{ V}$
\Rightarrow Any metal with $E^{o} < -0.42$ V can	h be oxidized by H_2O
Cathode, reduction:	
$O_2(g) + 4H^+ + 4e^- \rightarrow 2H_2O(l)$	$E^{o} = +1.23 \text{ V}$
$(at pH = 7)^2 \rightarrow$	
Anode, oxidation:	
$M(s) \rightarrow M^{n+} + ne^{-}$	$E^{o} < +0.82 \text{ V}$
\Rightarrow Any metal with $E^o < +0.82$ V can in the presence of O ₂	n be oxidized by H_2O





Corrosion protection - Anodic protection - preoxidation of the metal by formation of a thin layer of protective metal oxide - Cathodic protection - connecting the metal to a more strongly reducing metal with lower E^{o} value called sacrificial anode **Example:** Protecting Fe construction elements by connecting them to blocks of Mg or Al (sacrificial anodes) Mg rod $E_{Mg}^{o} = -2.36 \text{ V}$ anode. oxidation $E^{o}_{Fa} = -0.44 \text{ V}$ cathode. reduction **Example:** Galvanization Iron pipe of **Fe** by coating it with **Zn** $E_{\rm Zn}^{o} = -0.76 \, {\rm V}$

21.7 Electrolytic Cells and Electrolysis

• Electrolytic cells – use external electrical source to drive a non-spontaneous reaction

Electrolytic cells act in reverse (non-spontaneous)
direction compared to galvanic cells

- $E_{cell}^{o} < 0$ and $\Delta G > 0$ (non-spontaneous reaction)
- > The anode is positive and the cathode is negative
- There are some similarities between electrolytic and galvanic cells
 - Oxidation is always on the anode and reduction is always on the cathode

Electrons always flow from anode toward cathode

Cell Type	ΔG	Ecell	Electrode		
			Name	Process	Sign
Voltaic	<0	>0	Anode Cathode	Oxidation Reduction	- +
Electrolytic	>0	<0	Anode Cathode	Oxidation Reduction	+ _

- Electrolysis the passage of electrical current through an electrolyte by applying external voltage (the process in electrolytic cells)
 - Electrolysis causes a non-spontaneous reaction (often a splitting of a substance to its elements)
 - The applied voltage must be greater than the cell potential of the reverse spontaneous reaction
 - The electrolyte can be a molten salt or an aqueous electrolyte solution
 - Salt bridges are often not necessary
 - During electrolysis the cations are attracted to the cathode (negative) and the anions are attracted to the anode (positive)