## Predicting the Products of Electrolysis

- The cations (+) are attracted to the cathode (-) and the anions (-) are attracted to the anode (+)
- Electrolysis of molten salts used for industrial isolation of the most active elements (Na, Li, Mg, Al, ...; F<sub>2</sub>, Cl<sub>2</sub>, Br<sub>2</sub>, ...)
  - The cation is reduced at the cathode
  - The anion is oxidized at the anode

**Example:** Isolation of Na and  $Cl_2$  by electrolysis of molten NaCl

| $Na^{+}(l) + e^{-} \rightarrow Na(l)$                         | (×2) | cathode, reduction |
|---------------------------------------------------------------|------|--------------------|
| $2\text{Cl}^{-}(l) \rightarrow \text{Cl}_{2}(g) + 2e$         | ;-   | anode, oxidation   |
| $\overline{2Na^+(l) + 2Cl^-(l) \rightarrow 2Na(l) + Cl_2(g)}$ |      |                    |

## • Electrolysis of mixed molten salts

- The cation with higher *E<sup>o</sup>* value (the stronger oxidizing agent) is reduced at the cathode
- The anion with lower *E<sup>o</sup>* value (the stronger reducing agent) is oxidized at the anode

**Note:** *E*<sup>o</sup> values in appendix D are for aqueous ions and can be used only as approximate guidance. Instead, *EN* values can be used to estimate the stronger oxidizing and reducing agents.

**Example:** Predict the products of the electrolysis of a molten mixture of NaCl and AlF<sub>3</sub>

→ Possible cathode half-reactions (reduction)
1) Reduction of Na<sup>+</sup> and 2) Reduction of Al<sup>3+</sup>



→Al<sup>3+</sup> is the stronger oxidizing agent because Al is more *EN* than Na, so Al<sup>3+</sup> gains electrons easier ⇒ Cathode half-reaction: Al<sup>3+</sup>(l) + 3e<sup>-</sup> → Al(l) → Possible anode half-reactions (oxidation) 1) Oxidation of F<sup>-</sup> and 2) Oxidation of Cl<sup>-</sup> →Cl<sup>-</sup> is the stronger reducing agent because Cl is less *EN* than F, so Cl<sup>-</sup> looses electrons easier ⇒ Anode half-reaction: 2Cl<sup>-</sup>(l) → Cl<sub>2</sub>(g) + 2e<sup>-</sup> Al<sup>3+</sup>(l) + 3e<sup>-</sup> → Al(l) (×2) cathode, reduction 2Cl<sup>-</sup>(l) → Cl<sub>2</sub>(g) + 2e<sup>-</sup> (×3) anode, oxidation  $2Al^{3+}(l) + 6e^{-} + 6Cl^{-}(l) \rightarrow 2Al(l) + 3Cl_{2}(g) + 6e^{-}$ ⇒ The products are Al(l) and Cl<sub>2</sub>(g)

## • Electrolysis of aqueous solutions

- $\rightarrow$  Possible cathode half-reactions (reduction)
  - 1. Reduction of  $H_2O$
  - 2. Reduction of cations in the solution
- $\rightarrow$  Possible anode half-reactions (oxidation)
  - 1. Oxidation of  $H_2O$
  - 2. Oxidation of active metal electrodes
  - 3. Oxidation of **anions** in the solution
- → The half-reaction with the **higher** *E*<sup>*o*</sup> **value** (having the stronger oxidizing agent) **occurs on** the **cathode**
- $\rightarrow$  The half-reaction with the lower  $E^{o}$  value (having the stronger reducing agent) occurs on the anode

- $| \rightarrow E_{cell} < 0 \Rightarrow$  non-spontaneous reaction
- $\Rightarrow$  To drive the reaction, the external voltage must be greater than 1.24 V
- **Overvoltage** the extra voltage (in the case of water over 1.24) needed to drive the reaction

For H<sub>2</sub>O on most inert electrodes, the overvoltage is
 0.4 to 0.6 V per electrode
 → Cathode, reduction:

- $E = -0.42 0.6 \approx -1.0 \text{ V}$
- $\rightarrow$  Anode, oxidation:

$$E = +0.82 + 0.6 \approx +1.4 \text{ V}$$

$$E_{cell} = -1.0 - (+1.4) \approx -2.4 \text{ V}$$



**Example:** Predict the products of the electrolysis of a mixture of 1M NaCl(aq) and 1M KNO<sub>3</sub>(aq) with inert electrodes at pH = 7.  $\rightarrow$  Possible cathode half-reactions (reduction) **1.** Reduction of  $H_2O$  $2H_2O(1) + 2e^- \rightarrow H_2(g) + 2OH^-$  E = -0.42 V $\rightarrow$  with overvoltage  $E \approx -1.0 V$ **2.** Reduction of cations in the solution Na<sup>+</sup> + e<sup>-</sup>  $\rightarrow$  Na(s)  $E^o = -2.71 V$ K<sup>+</sup> + e<sup>-</sup>  $\rightarrow$  K(s)  $E^o = -2.93 V$  $\rightarrow$  Half-reaction (1) has the highest (most positive) E value  $\Rightarrow$   $H_2O$  is reduced to  $H_2$  on the cathode

 $\rightarrow$  Possible anode half-reactions (oxidation) 1. Oxidation of H<sub>2</sub>O  $2H_2O(1) \rightarrow O_2(g) + 4H^+ + 4e^-$  E = +0.82 V $E \approx \pm 1.4 \text{ V}$  $\rightarrow$  with overvoltage 2. Oxidation of active metal electrodes – none 3. Oxidation of anions in the solution  $E^{o} = +1.36 \text{ V}$  $2Cl^{-} \rightarrow Cl_2(g) + 2e^{-}$ **Note:** NO<sup>3-</sup> can't be further oxidized (not a product in any half-reaction in appendix D)  $\rightarrow$  Half-reaction (3) has the lowest  $E^{o}$  value  $\Rightarrow$  Cl<sup>-</sup> is oxidized to Cl<sub>2</sub> on the anode  $\rightarrow$  Overall: 2H<sub>2</sub>O(l) + 2Cl<sup>-</sup> $\rightarrow$  H<sub>2</sub>(g) + 2OH<sup>-</sup> + Cl<sub>2</sub>(g) Note: Without the overvoltage, H<sub>2</sub>O would be oxidized to  $O_2$  at the anode

- Electrolysis of aqueous solutions is often used for production or purification of less active elements
  - > Cations of less active metals (Cu, Ag, Au, Pt, ...) are reduced on the cathode
  - $\blacktriangleright$  Anions of less active nonmetals (I<sub>2</sub>, Br<sub>2</sub>, ...) are oxidized on the anode (including Cl<sub>2</sub> due to the overvoltage of water)
  - > Cations of more active metals (Na, K, Mg, Ca, ...) are not reduced (H<sub>2</sub>O is reduced to H<sub>2</sub> instead)  $\rightarrow$ can't be produced by electrolysis of aqueous soln.
  - > Anions of more active nonmetals (F<sup>-</sup>) and oxoanions of elements in their highest oxidation state (NO<sub>3</sub><sup>-</sup>, CO<sub>3</sub><sup>2-</sup>, SO<sub>4</sub><sup>2-</sup>, ...) are not oxidized



## The Stoichiometry of Electrolysis

- Faraday's law the amount of substance produced on each electrode is directly proportional to the amount of charge transferred through the cell
  - $I \rightarrow el. current$  $t \rightarrow \text{time of electrolysis}$  $Q \rightarrow$  charge transferred
    - $n \rightarrow \# \text{ mol } e^- \text{ transferred}$

$$\begin{array}{ll} I = Q/t & \rightarrow & Q = I \times t \\ Q = nF & \rightarrow & n = Q/F \end{array}$$

Ixt n = -

 $\rightarrow n$  is related to the amount of substance through the stoichiometry of the half-reaction

 $\rightarrow$  Allows the determination of the amount of substance produced by measuring I and t

**Example:** During electrorefining of Cu, how much time is needed to produce **250** g Cu on the cathode if the current is kept at **11 A**?

 $I = 11 \text{ A} = 11 \text{ C/s} \qquad t \to ?$ Half-reaction:  $\operatorname{Cu}^{2+} + 2e^{-} \to \operatorname{Cu}(s)$  $n = 250 \text{ g} \times \frac{1 \text{ mol } \operatorname{Cu}}{63.55 \text{ g} \operatorname{Cu}} \times \frac{2 \text{ mol } e^{-}}{1 \text{ mol } \operatorname{Cu}} = 7.9 \text{ mol}$  $n = \frac{I \times t}{F} \implies t = \frac{n \times F}{I}$  $t = \frac{7.9 \text{ mol} \times 96485 \text{ C/mol}}{11 \text{ C/s}} = 6.9 \times 10^{4} \text{ s} = 19 \text{ hr}$ 

