12.5 The Unique Properties of Water

- Solvent properties of water
 - Dissolves ionic compounds through ion-dipole forces (salts, minerals, acids, bases, ...)
 - Dissolves molecular compounds
 - Through H-bonding and dipole-dipole forces (sugars, alcohols, proteins, ...)
 - Through Dipole-induced dipole forces (O₂, CO₂, ...)
- Thermal properties of water
 - Very high **heat capacity** it takes a lot of heat to warm or cool water (due to strong H-bonding)
 - Oceans help maintain a narrow *T* range on Earth
 - Very high ΔH_{vap} it takes a lot of heat to vaporize water (due to strong H-bonding)
 - Sweating helps maintain body temperature

- Surface properties of water
 - -Very high **surface tension** (strong H-bonding)
 - Provides excellent capillary action (moisture in soil)
- **Density** of water
 - Ice has lower density than liquid water due to the open ice structure (hexagonal network of Hbonds); the liquid is packed more efficiently
- Negative slope of solid liquid-phase boundary (rare)
- Ice floats on the surface of lakes and prevents total freezing

12.6 The Solid State

- Amorphous solids random arrangement of structural units (rubber, plastics, ...)
- Crystalline solids structural units arranged in regular arrays (crystals with well defined shapes and surfaces)
- Crystal lattice a system of points defining the geometric pattern of the crystal
- Lattice Lattice points – points point with identical surroundings (can be occupied by atoms, Unit cell_ ions or molecules)
- ≻ Unit cell a small set of lattice points sufficient to reproduce the entire lattice

- There are 7 crystallographic systems with different lattices occurring in nature
- Cubic system the unit cell is a cube
 - There are three types of cubic unit cells
 - Let's assume that a spherical particle occupies each lattice point (not always the case)

- Coordination number the number of nearest neighbors of a particle in the lattice
 - SC \rightarrow coord. # = 6 \rightarrow each particle touches 6 other particles (4 in the same layer, 1 above and 1 below)
 - BCC \rightarrow coord. # = 8 \rightarrow each corner particle touches 8 particles in the body centers of the 8 cells it belongs to
 - FCC \rightarrow coord. # = 12 \rightarrow each corner particle touches 12 particles in the face centers (4 in the same layer, 4 above and 4 below)

Packing efficiency – part of the total volume of the crystal that is occupied by the particles

 For spherical particles of the same size, the efficiency increases with the coordination #

 SC & BCC – in each layer, the particles form squares with diamond-shaped holes between them

 SC → 2nd, 3rd, ... layers directly on top of 1st layer
 BCC → 2nd layer fits in holes of 1st layer, and 3rd layer fits in holes of 2nd layer directly above 1st → Na, Fe, ...

- ► Lattice points per unit cell (n)
 Corner points belong to 8 cells → 1/8 of the corner points
 Face points belong to 2 cells → 1/2 of the corner points
 - Body points belong to 1 cell \rightarrow all body points
- > SC \rightarrow n = (1/8) * 8 corners = 1
- > BCC $\rightarrow n = (1/8) \times 8$ corners + 1 body point = 1+1 = 2
- > FCC $\rightarrow n = (1/8) * 8$ corners + (1/2)*6 face points = 1+3 = 4

- Closest packing structures in each layer, the particles form rhombi with triangular holes between them (more efficient)
 - ➤Hexagonal closest packing (hcp) 2nd layer fits in holes of 1st layer, and 3rd layer fits in holes of 2nd layer directly above 1st layer (ABAB ...) → Zn, Mg, Ti, ...
 - Cubic closest packing (ccp) 2^{nd} layer fits in holes of 1^{st} layer; 3^{rd} layer fits in holes of 2^{nd} layer above holes of 1^{st} layer (ABCABC ...) \rightarrow Al, Ni, Cu, Pb, Ag, ...

Density of unit cells (d) – same as that of the crystal
$-m \rightarrow$ mass of unit cell; $m_p \rightarrow$ mass of 1 particle
$-V \rightarrow$ volume of unit cell; $V_p \rightarrow$ volume of 1 particle
$-V_{o} \rightarrow$ volume of unit cell occupied by particles
$-n \rightarrow \#$ of particles per unit cell
$-M \rightarrow$ molar mass; $N_a \rightarrow$ Avogadro's number
$-Eff \rightarrow$ packing efficiency; $r \rightarrow$ radius of a particle
$V_o = V \times Eff = n \times V_p \implies V = \frac{n \times V_p}{Eff}$
$d = \frac{m}{V} = \frac{n \times m_p}{V} = \frac{n \times (M / N_a)}{V} = \frac{n \times M \times Eff}{n \times V_p \times N_a}$
$V_p = \frac{4}{3}\pi \times r^3 \qquad \Rightarrow \qquad d = \frac{3}{4} \times \frac{M \times Eff}{\pi \times r^3 \times N_a}$

Example: Fe has a density of 7.90 g/cm³ and crystallizes in a BCC lattice. Calculate the atomic radius of Fe. $M \rightarrow 55.85$ g/mol; Eff $\rightarrow 0.68$; $r \rightarrow ???$ $d = \frac{3}{4} \times \frac{M \times Eff}{\pi \times r^3 \times N_a} \implies r = \sqrt[3]{\frac{3}{4} \times \frac{M \times Eff}{\pi \times d \times N_a}}$ $r = \sqrt[3]{\frac{3}{4} \times \frac{55.85}{3.14 \times 7.90}}$ g/cm³ $\times 6.022 \times 10^{23}$ /mol $r = 1.24 \times 10^{-8}$ cm = 124 pm

- The structure of the unit cell can be studied by **x-ray** diffraction
 - The crystal is irradiated with a narrow beam of x-rays and the resulting diffraction pattern consists of dark and bright spots
 - The condition for constructive interference (bright spot in the pattern) is given by the Bragg Equation:

2d $sin\theta = n\lambda \rightarrow d$ – distance between layers $\rightarrow n$ – whole number

