12.5 The Unique Properties of Water

- Solvent properties of water
- Dissolves ionic compounds through ion-dipole forces (salts, minerals, acids, bases, ...)
- Dissolves molecular compounds
- Through H-bonding and dipole-dipole forces (sugars, alcohols, proteins, ...)
- Through Dipole-induced dipole forces $\left(\mathrm{O}_{2}, \mathrm{CO}_{2}, \ldots\right)$
- Thermal properties of water
- Very high heat capacity - it takes a lot of heat to warm or cool water (due to strong H-bonding)
- Oceans help maintain a narrow \boldsymbol{T} range on Earth
- Very high $\Delta \boldsymbol{H}_{\text {vap }}$ - it takes a lot of heat to vaporize water (due to strong H -bonding)
- Sweating helps maintain body temperature

- Surface properties of water

- Very high surface tension (strong H-bonding)
- Provides excellent capillary action (moisture in soil)

- Density of water

- Ice has lower density than liquid water due to the open ice structure (hexagonal network of H bonds); the liquid is packed more efficiently
- Negative slope of solid liquid-phase boundary (rare)
- Ice floats on the surface of lakes and prevents total freezing

There are 7 crystallographic systems with different lattices occurring in nature

- Cubic system - the unit cell is a cube
- There are three types of cubic unit cells
- Let's assume that a spherical particle occupies each lattice point (not always the case)

Face-centered cubic (FCC)

$>$ Coordination number - the number of nearest neighbors of a particle in the lattice

- SC \rightarrow coord. \# = $6 \rightarrow$ each particle touches 6 other particles (4 in the same layer, 1 above and 1 below)
- BCC \rightarrow coord. \# = 8 \rightarrow each corner particle touches 8 particles in the body centers of the 8 cells it belongs to
- FCC \rightarrow coord. $\#=\mathbf{1 2} \rightarrow$ each corner particle touches 12 particles in the face centers (4 in the same layer, 4 above and 4 below)

$>$ Lattice points per unit cell (n)

- Corner points belong to 8 cells $\rightarrow 1 / 8$ of the corner points
- Face points belong to 2 cells $\rightarrow 1 / 2$ of the corner points
- Body points belong to 1 cell \rightarrow all body points
$>\mathrm{SC} \rightarrow \boldsymbol{n}=(\mathbf{1 / 8}) * \mathbf{8}$ corners $=\mathbf{1}$
$>\mathrm{BCC} \rightarrow n=(1 / 8) * 8$ corners +1 body point $=1+1=2$
$>$ FCC $\rightarrow n=(1 / 8) * 8$ corners $+(1 / 2) * 6$ face points $=1+3=4$

Example: Fe has a density of $7.90 \mathrm{~g} / \mathrm{cm}^{\mathbf{3}}$ and crystallizes in a BCC lattice. Calculate the atomic radius of Fe .
$\boldsymbol{M} \rightarrow 55.85 \mathrm{~g} / \mathrm{mol} ; \boldsymbol{E f f} \rightarrow 0.68 ; \boldsymbol{r} \rightarrow$???
$d=\frac{3}{4} \times \frac{M \times E f f}{\pi \times r^{3} \times N_{a}} \Rightarrow r=\sqrt[3]{\frac{3}{4} \times \frac{M \times E f f}{\pi \times d \times N_{a}}}$ $r=\sqrt[3]{\frac{3}{4} \times \frac{55.85 \mathrm{~g} / \mathrm{mol} \times 0.68}{3.14 \times 7.90 \mathrm{~g} / \mathrm{cm}^{3} \times 6.022 \times 10^{23} / \mathrm{mol}}}$
$r=1.24 \times 10^{-8} \mathrm{~cm}=124 \mathrm{pm}$

- Density of unit cells (\boldsymbol{d}) - same as that of the crystal
$-\boldsymbol{m} \rightarrow$ mass of unit cell; $\boldsymbol{m}_{p} \rightarrow$ mass of 1 particle
$-\boldsymbol{V} \rightarrow$ volume of unit cell; $\boldsymbol{V}_{p} \rightarrow$ volume of 1 particle
- $\boldsymbol{V}_{o} \rightarrow$ volume of unit cell occupied by particles
$-\boldsymbol{n} \rightarrow$ \# of particles per unit cell
$-\boldsymbol{M} \rightarrow$ molar mass; $\boldsymbol{N}_{a} \rightarrow$ Avogadro's number
$-\boldsymbol{E f f} \rightarrow$ packing efficiency; $\boldsymbol{r} \rightarrow$ radius of a particle

$$
\begin{aligned}
& V_{o}=V \times E f f=n \times V_{p} \Rightarrow V=\frac{n \times V_{p}}{E f f} \\
& d=\frac{m}{V}=\frac{n \times m_{p}}{V}=\frac{n \times\left(M / N_{a}\right)}{V}=\frac{n \times M \times E f f}{n \times V_{p} \times N_{a}} \\
& V_{p}=\frac{4}{3} \pi \times r^{3} \Rightarrow d=\frac{3}{4} \times \frac{M \times E f f}{\pi \times r^{3} \times N_{a}}
\end{aligned}
$$

