Mixtures: Solutions and Colloids

- Solutions homogeneous mixtures (a single phase)
- Colloids heterogeneous mixtures (two or more phases)

13.1 Types of Solutions and Solubility

- Solvent the substance that dissolves; usually the most abundant component of the mixture; has the same physical state as the solution
- Solute the substance that is dissolved
- Solubility (S) the maximum amount of solute that can be dissolved in a given amount of solvent or solution
- Concentration of solute various units are used
- **Dipole-dipole** forces present in solutions of polar molecules in polar solvents such as H_2O
- **H-bonding** forces present in solutions of Oand N-containing molecules (sugars, alcohols, amino acids, ...) in protic solvents such as H₂O
- **Ion-induced dipole** forces solutions of ionic compounds in less polar or non-polar solvents
- **Dipole-induced dipole** forces present in solutions of polar molecules in non-polar solvents or non-polar molecules in polar solvents
- **Dispersion** forces present in all solutions (most important for solutions of non-polar molecules in non-polar solvents)

Intermolecular Forces in Solution

- All types of *IF*s in pure substances also occur in solutions (in addition, ion-dipole forces are very common)
- **Ion-dipole** forces present in solutions of ionic compounds in polar solvents such as H₂O
 - -Hydration (solvation)
 - The water dipoles pull the ions away from the ionic crystal and surround them (typical coord. numbers 4 or 6)
 - There is a short range order around the ions consisting of Hbonded shells of water molecules

- The **"like dissolves like rule"** substances with similar types of *IF*s dissolve in each other well
 - Strong solute-solvent *IF*s lead to better solubility (lower the total energy of the system)
 - The solute-solvent *IF*s created during dissolution must have comparable strength to the solute-solute and solvent-solvent *IF*s destroyed in this process

Example:

- ➤ Water dissolves well alcohols (ROH) with short hydrocarbon chains (R) → methanol, ethanol, ...
 - Strong H-bonding *IF*s in the solute and the solvent are replaced with strong solute-solvent H-bonding *IF*s
- ➤ Water does not dissolve well alcohols (ROH) with long hydrocarbon chains (R) → hexanol, ...
 - Strong H-bonding in water is replaced with weaker *IF*s between the water dipole and the large non-polar hydrocarbon chains (R) → (H-bonding with the OH part of the alcohol is a smaller fraction of the total *IF*s)

Example:

What is a better solvent for diethyl ether (CH₃CH₂-O-CH₂CH₃), water or propanol (CH₃CH₂CH₂OH)?

- Both water and propanol interact with ether through H-bonding
- Propanol and ether interact well through dispersion forces (similar non-polar hydrocarbon chains)
- Water can't interact well through dispersion forces with the hydrocarbon portion of ether
- \Rightarrow Propanol is a better solvent for ether

- Soaps Na⁺ salts of long chain carboxylic acids
 - Long, non-polar hydrocarbon "tail" \rightarrow hydrophobic
 - Small, polar-ionic carboxyl "head" \rightarrow hydrophilic
 - The polar head dissolves in water; the non-polar tail dissolves in grease → washing action
- Detergents contain surfactants (surface-active compounds) → similar to soaps

- Liquid solutions the solvent is a liquid
 - Solid-liquid and liquid-liquid solutions
 - Some salts and polar molecular compounds dissolve well in water and short chain alcohols
 - Less polar solids dissolve well in less polar solvents like acetone, chloroform, ether, ...
 - Non-polar substances dissolve best in non-polar solvents like hexane, benzene, ...
 - Gas-liquid solutions
 - Non-polar gases have poor solubility in water
 - Some gases dissolve in water through chemical reactions (HCl, CO₂, SO₂, ...)
- Gaseous solutions the solvent is a gas
 - -Gas-gas solutions gases mix in all proportions

- Solid solutions the solvent is a solid
 - Gas-solid solutions gas molecules penetrate the crystal lattices of some metals (H₂/Pd, O₂/Cu, ...)
 - Solid-solid solutions homogeneous alloys, waxes, ...

Substitutional alloys – the atoms of one element take some of the positions in the lattice of another element

► Interstitial alloys – the atoms of one element fit into the gaps of the lattice of another element

Example:

Quick cleaning of laboratory glassware:

> Cleaning a sample tube with a salt residue Wash with water \rightarrow dissolves salt (ion-dipole forces) Wash with ethanol \rightarrow dissolves water (H-bonding) Wash with acetone \rightarrow dissolves ethanol (dipole-

dipole, dispersion forces)

Dry \rightarrow acetone evaporates easily (low T_b)

➢ Cleaning a sample tube with an oily residue
Wash with hexane → dissolves oil (dispersion forces)
Wash with acetone → dissolves hexane (dispersion

and dipole-induced dipole forces)

Dry \rightarrow acetone evaporates easily (low T_b)