13.2 Energy Changes in the Solution Process

- Solution cycle the solution process can be divided into three steps:
 - 1) Separation of solute particles to make room for the solvent – endothermic (energy is needed to overcome the *IF*s of attraction)
 - 2) Separation of solvent particles to make room for the solute particles – endothermic (energy is needed to overcome the *IF*s of attraction)
 - 3) Mixing of solvent and solute particles exothermic (solute-solvent *IF*s lower the energy)

Solutions of Ionic Solids

- The hydration of the separated solute ions is a combination of steps 2 and 3 in the solution cycle
 → (solvent separation + mixing)
 - Heat (enthalpy) of hydration $(\Delta H_{hydr}) \Delta H$ for hydration of separated gaseous ions
- $M^{+}(g) + X^{-}(g) \rightarrow M^{+}(aq) + X^{-}(aq)$ $\Delta H_{hydr} = \Delta H_{solvent} + \Delta H_{mix}$ $\Rightarrow \Delta H_{soln} = \Delta H_{solute} + \Delta H_{hydr}$

$$\Rightarrow \Delta H_{\rm soln} = \Delta H_{\rm lattice} + \Delta H_{\rm hydr}$$

• Individual ionic heats of hydration $-\Delta H$ for the hydration of 1 mol of separated gaseous cations (or anions)

 $M^+(g) \rightarrow M^+(aq)$ or $X^-(g) \rightarrow X^-(aq)$

- $-\Delta H_{hydr}$ of ions is always exothermic ($\Delta H_{hydr} < 0$) because the ion-dipole forces that replace some of the H-bonds in water are stronger
- The overall heat of hydration is a sum of the heats for the cations and the anions
- > Trends in ΔH_{hydr} of ions (same as for $\Delta H_{lattice}$)
 - ΔH_{hydr} is larger (more exothermic) for ions with greater charges and smaller sizes \rightarrow ions with higher charge density
 - The charge factor is more important

Some ionic heats of hydration in kJ/mol			
Li ⁺ (-558)	Be ²⁺ (-2533)		F ⁻ (-483)
Na ⁺ (-444)	Mg ²⁺ (-2003)	Al ³⁺ (-4704)	Cl ⁻ (-340)
K ⁺ (-361)	Ca ²⁺ (-1657)		Br ⁻ (-309)

The sign of ΔH_{soln} is hard to predict, since both $\Delta H_{lattice}$ and ΔH_{hydr} depend on the ionic charge and size and tend to cancel each other's effects

The Tendency Toward Disorder

- $-\Delta H_{soln} < 0$ favors the solution process since the total energy of the system is lowered; but many ionic solids have $\Delta H_{soln} > 0$ and still dissolve readily in water
- ⇒There is a second factor that affects the solution process and acts in addition to the enthalpy factor
- **Disorder** systems have a natural tendency to become more disordered
 - Entropy a measure of the disorder in the system
 ↑Entropy ↔ ↑Disorder

– Mixing leads to greater disorder and \uparrow the entropy

- The solution process is governed by the combination of the enthalpy and entropy factors
 - Compounds with $\Delta H_{soln} < 0$ are typically soluble since both factors are favorable
 - Compounds with $\Delta H_{soln} > 0$ are soluble only if ΔH_{soln} is relatively small so the favorable entropy factor dominates
 - Compounds with $\Delta H_{soln} \gg 0$ are typically insoluble since the unfavorable enthalpy factor dominates

Example: Benzene is insoluble in water because the solute-solvent *IF*s are weak so the (-) ΔH_{mix} is very small compared to the (+) $\Delta H_{\text{solut}} \& \Delta H_{\text{solv}}$ $\Rightarrow \Delta H_{\text{soln}} = \Delta H_{\text{solute}} + \Delta H_{\text{solvent}} + \Delta H_{\text{mix}} >> 0$

13.3 Solubility as an Equilibrium Process

- Typically solutes have limited solubility in a given solvent
 - The solution process is countered by *recrystallization* of the dissolved solute
 - Dynamic equilibrium the rates of dissolution and recrystallization become equal

Solute (undissolved) \leftrightarrow Solute (dissolved)

 Saturated solution – no more solute can be dissolved (can be produced by equilibrating the solution with an excess of the solute; the excess solute can be filtered out after saturation)

- Molar solubility (S) the concentration of the saturated solution in mol/L
- Unsaturated solution more solute can be dissolved
- Supersaturated solution the concentration is higher than the solubility, *S* (unstable, nonequilibrium state; disturbances or addition of seed crystal lead to crystallization)

Effect of Temperature on Solubility

• Most solids are more soluble at higher *T* due to their endothermic $(+) \Delta H_{soln}$

>(+) ΔH_{soln} means that heat is absorbed during dissolution (the heat can be viewed as a reactant)

- Solute + Solvent + $heat \leftrightarrow$ Saturated solution
 - >Increasing *T* provides the *heat* needed for the forward reaction to proceed (S^{\uparrow})
- Some **solids** are more soluble at higher *T* despite their exothermic (-) ΔH_{soln} (Why?)
 - Tabulated ΔH_{soln} values refer to the standard state (1M solution), but saturated solutions can be much more concentrated
 - >At very high concentrations the hydration process is hindered so ΔH_{hydr} becomes less negative; thus ΔH_{soln} can change dramatically and even switch signs from (-) to (+)

• Gases are less soluble in water at higher T due to their exothermic (-) ΔH_{soln}

 \succ Δ*H*_{soln} is (-) since Δ*H*_{solute} ≈ 0 and *H*_{hydr} < 0

 $Gas + Water \leftrightarrow Saturated solution + heat$

>Increasing *T* provides the *heat* needed for the reverse reaction to proceed $(S\downarrow)$

Effect of Pressure on Solubility

- Pressure has little effect on the solubility of solids and liquids (low compressibility)
- The molar solubility of gases (S_{gas}) increases with increasing their partial pressures (P_{gas}) over the solution (collisions with liquid surface \uparrow)

➢ Henry's law - S_{gas} is directly proportional to P_{gas} S_{gas} = k_H×P_{gas} - k_H - Henry's law constant (depends on the gas, solvent and T)
Example: What is the concentration of CO₂ in rain drops at 20°C and 1.0 atm in air that has 1.0% by volume CO₂? [k_H(CO₂, 20°C) = 2.3×10⁻² mol/L.atm]
1.0% by volume → χ_{CO2} = 0.010
P_{CO2} = χ_{CO2} P_{tot} = 0.010 × 1.0 atm = 0.010 atm
S_{CO2} = k_H×P_{CO2} = 2.3×10⁻² mol/L.atm × 0.010 atm

 $= 2.3 \times 10^{-4} \text{ mol/L}$