13.2 Energy Changes in the Solution Process

Solution cycle – the solution process can be divided into three steps:

1) **Separation of solute particles** to make room for the solvent – endothermic (energy is needed to overcome the IF's of attraction)

2) **Separation of solvent particles** to make room for the solute particles – endothermic (energy is needed to overcome the IF's of attraction)

3) **Mixing of solvent and solute particles** – exothermic (solute-solvent IF's lower the energy)

Solutions of Ionic Solids

- For dilute solutions of ionic solids, the solute separation has \(\Delta H \) equal to the lattice enthalpy: \(\text{MX(s)} \rightarrow \text{M}^+(g) + \text{X}^-(g) \quad \Delta H_{\text{solute}} = \Delta H_{\text{lattice}} > 0 \)
- The hydration of the separated solute ions is a combination of steps 2 and 3 in the solution cycle → (solvent separation + mixing)

- **Heat (enthalpy) of hydration** \(\Delta H_{\text{hydr}} \) – \(\Delta H \) for hydration of separated gaseous ions

\[
\text{M}^+(g) + \text{X}^-(g) \rightarrow \text{M}^+(aq) + \text{X}^-(aq)
\]

\[
\Delta H_{\text{hydr}} = \Delta H_{\text{solute}} + \Delta H_{\text{mix}}
\]

\[
\Rightarrow \Delta H_{\text{soln}} = \Delta H_{\text{solute}} + \Delta H_{\text{hydr}}
\]

- **Individual ionic heats of hydration** – \(\Delta H \) for the hydration of 1 mol of separated gaseous cations (or anions)

\[
\text{M}^+(g) \rightarrow \text{M}^+(aq) \quad \text{or} \quad \text{X}^-(g) \rightarrow \text{X}^-(aq)
\]

- \(\Delta H_{\text{hydr}} \) of ions is always exothermic (\(\Delta H_{\text{hydr}} < 0 \)) because the ion-dipole forces that replace some of the H-bonds in water are stronger

- The overall heat of hydration is a sum of the heats for the cations and the anions

Trends in \(\Delta H_{\text{hydr}} \) of ions (same as for \(\Delta H_{\text{lattice}} \))

- \(\Delta H_{\text{hydr}} \) is larger (more exothermic) for ions with greater charges and smaller sizes → ions with higher **charge density**

- The charge factor is more important
The sign of ΔH_{soln} is hard to predict, since both $\Delta H_{\text{lattice}}$ and ΔH_{hydr} depend on the ionic charge and size and tend to cancel each other’s effects.

Example: NaCl

- $\Delta H_{\text{lattice}} = 787$ kJ/mol
- $\Delta H_{\text{hydr}} = (-444) + (-340) = -784$ kJ/mol
- $\Delta H_{\text{soln}} = (787) + (-784) = +4$ kJ/mol

The Tendency Toward Disorder

- $\Delta H_{\text{soln}} < 0$ favors the solution process since the total energy of the system is lowered; but many ionic solids have $\Delta H_{\text{soln}} > 0$ and still dissolve readily in water.

 \Rightarrow There is a second factor that affects the solution process and acts in addition to the enthalpy factor.

Disorder – systems have a natural tendency to become more disordered.

- **Entropy** – a measure of the disorder in the system

 \uparrowEntropy $\leftrightarrow \uparrow$Disorder

 - Mixing leads to greater disorder and \uparrow the entropy.

13.3 Solubility as an Equilibrium Process

- Typically solutes have limited solubility in a given solvent.
 - The solution process is countered by recrystallization of the dissolved solute.
 - **Dynamic equilibrium** – the rates of dissolution and recrystallization become equal.

 Solute (undissolved) \leftrightarrow Solute (dissolved)

- **Saturated solution** – no more solute can be dissolved (can be produced by equilibrating the solution with an excess of the solute; the excess solute can be filtered out after saturation.)

<table>
<thead>
<tr>
<th>Ion</th>
<th>ΔH_{hydr}</th>
<th>$\Delta H_{\text{lattice}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li$^+$</td>
<td>-558</td>
<td>-2533</td>
</tr>
<tr>
<td>Be$^{2+}$</td>
<td>-2533</td>
<td>787</td>
</tr>
<tr>
<td>Na$^+$</td>
<td>-444</td>
<td>-2003</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>-2003</td>
<td>787</td>
</tr>
<tr>
<td>K$^+$</td>
<td>-361</td>
<td>-1657</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>-1657</td>
<td>787</td>
</tr>
<tr>
<td>Al$^{3+}$</td>
<td>-4704</td>
<td>787</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>-340</td>
<td>-784</td>
</tr>
<tr>
<td>Br$^-$</td>
<td>-309</td>
<td>787</td>
</tr>
<tr>
<td>F$^-$</td>
<td>-483</td>
<td>-784</td>
</tr>
<tr>
<td>Be$^{2+}$</td>
<td>-2533</td>
<td>787</td>
</tr>
<tr>
<td>Li$^+$</td>
<td>-558</td>
<td>-2533</td>
</tr>
<tr>
<td>Na$^+$</td>
<td>-444</td>
<td>-2003</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>-2003</td>
<td>787</td>
</tr>
<tr>
<td>K$^+$</td>
<td>-361</td>
<td>-1657</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>-1657</td>
<td>787</td>
</tr>
<tr>
<td>Al$^{3+}$</td>
<td>-4704</td>
<td>787</td>
</tr>
<tr>
<td>Cl$^-$</td>
<td>-340</td>
<td>-784</td>
</tr>
<tr>
<td>Br$^-$</td>
<td>-309</td>
<td>787</td>
</tr>
<tr>
<td>F$^-$</td>
<td>-483</td>
<td>-784</td>
</tr>
</tbody>
</table>
- **Molar solubility** \((S) \) – the concentration of the saturated solution in mol/L
- **Unsaturated solution** – more solute can be dissolved
- **Supersaturated solution** – the concentration is higher than the solubility, \(S \) (unstable, non-equilibrium state; disturbances or addition of seed crystal lead to crystallization)

Effect of Temperature on Solubility

- Most **solids** are more soluble at higher \(T \) due to their endothermic (+) \(\Delta H_{\text{soln}} \)

 \((+) \Delta H_{\text{soln}} \) means that heat is absorbed during dissolution (the heat can be viewed as a reactant)

- **Gases** are less soluble in water at higher \(T \) due to their exothermic (-) \(\Delta H_{\text{soln}} \)

 \(\Delta H_{\text{soln}} \) is (-) since \(\Delta H_{\text{solute}} \approx 0 \) and \(H_{\text{hydr}} < 0 \)

Effect of Pressure on Solubility

- Pressure has little effect on the solubility of solids and liquids (low compressibility)
- The molar solubility of gases \((S_{gas}) \) increases with increasing their partial pressures \((P_{gas}) \) over the solution (collisions with liquid surface ↑)

Solute + Solvent + heat ↔ Saturated solution

- Increasing \(T \) provides the heat needed for the forward reaction to proceed \((S \uparrow) \)

- **Some solids** are more soluble at higher \(T \) despite their exothermic (-) \(\Delta H_{\text{soln}} \) (Why?)

 \(\Delta H_{\text{soln}} \) values refer to the standard state (1M solution), but saturated solutions can be much more concentrated

 At very high concentrations the hydration process is hindered so \(\Delta H_{\text{hydr}} \) becomes less negative; thus \(\Delta H_{\text{soln}} \) can change dramatically and even switch signs from (-) to (+)

- **Henry’s law** - \(S_{gas} \) is directly proportional to \(P_{gas} \)

\[
S_{gas} = k_H \times P_{gas}
\]

- \(k_H \) – Henry’s law constant (depends on the gas, solvent and \(T \))

Example: What is the concentration of CO\(_2\) in rain drops at 20°C and 1.0 atm in air that has 1.0% by volume CO\(_2\) [\(k_H(\text{CO}_2, \ 20^\circ \text{C}) = 2.3 \times 10^{-2} \text{ mol/L.atm}\)]

- 1.0% by volume \(\rightarrow \chi_{\text{CO}_2} = 0.010 \)
- \(P_{\text{CO}_2} = \chi_{\text{CO}_2} \ P_{\text{tot}} = 0.010 \times 1.0 \text{ atm} = 0.010 \text{ atm} \)
- \(S_{\text{CO}_2} = k_H \times P_{\text{CO}_2} = 2.3 \times 10^{-2} \text{ mol/L.atm} \times 0.010 \text{ atm} \)

 \(= 2.3 \times 10^{-4} \text{ mol/L} \)