13.4 Expressing Solute Concentration

- Concentration - the ratio of the quantity of solute to the quantity of solution (or solvent)

Table 13.5 Concentration Definitions

Concentration Term	Ratio
Molarity (M)	amount (mol) of solute
	volume (L) of solution
Molality (m)	amount (mol) of solute
	mass (kg) of solvent
Parts by mass	mass of solute
	mass of solution
Parts by volume	volume of solute
	volume of solution
Mole fraction (X)	amount (mol) of solute
	amount (mol) of solute + amount (mol) of solvent

Molarity (\boldsymbol{M}) - the number of moles of solute per 1 liter of solution

$$
M=(\text { mol of solute }) /(\text { liters of solution })
$$

$-\boldsymbol{M}$ is affected by temperature (the solution volume changes with \boldsymbol{T}, so \boldsymbol{M} changes too)

- The solution volume is not a sum of the solvent and solute volumes (it must be measured after mixing)
$>$ Molality (\boldsymbol{m}) - the number of moles of solute per 1 kilogram of solvent

```
m=(mol of solute)/(kilograms of solvent)
```

$-\boldsymbol{m}$ is not affected by temperature (the amounts of solute and solvent don't change with \boldsymbol{T})

- The solution volume is not needed; \boldsymbol{m} can be calculated from the masses of solute and solvent
- \boldsymbol{M} and \boldsymbol{m} are nearly the same for dilute aqueous solutions since $\mathbf{1 L}$ of water is about $\mathbf{1} \mathbf{~ k g}$, so (liters of solution) \approx (kg of solvent)
Example: Calculate \boldsymbol{M} and \boldsymbol{m} for a solution prepared by dissolving $\mathbf{2 . 2} \mathbf{g}$ of NaOH in $\mathbf{5 5} \mathbf{g}$ of water if the density of the solution is $\mathbf{1 . 1} \mathbf{g} / \mathbf{m L}$.

$$
\begin{aligned}
& \text { mol } \text { solute }=2.2 \mathrm{~g} \mathrm{NaOH} \times \frac{1 \mathrm{~mol} \mathrm{NaOH}}{40 \mathrm{~g} \mathrm{NaOH}}=0.055 \mathrm{~mol} \\
& m=\frac{0.055 \mathrm{~mol} \mathrm{NaOH}}{0.055 \mathrm{~kg} \text { water }}=1.0 \frac{\mathrm{~mol}}{\mathrm{~kg}} \rightarrow 1.0 \mathrm{~m}(\text { molal }) \\
& \text { Volume }=\frac{\text { mass }}{\text { density }}=\frac{2.2 \mathrm{~g}+55 \mathrm{~g}}{1.1 \mathrm{~g} / \mathrm{mL}}=52 \mathrm{~mL} \\
& M=\frac{0.055 \mathrm{~mol} \mathrm{NaOH}}{0.052 \mathrm{~L} \text { solution }}=1.1 \frac{\mathrm{~mol}}{\mathrm{~L}} \rightarrow 1.1 \mathrm{M} \text { (molar) }
\end{aligned}
$$

- Parts of solute by parts of solution

$>$ Parts by mass

- Mass \% - grams of solute per 100 grams of solution $\rightarrow \%(\mathrm{w} / \mathrm{w})$

$$
\text { Mass } \%=\frac{\text { mass of solute }}{\text { mass of solution }} \times 100 \%
$$

- ppm or ppb - grams of solute per 1 million or $\mathbf{1}$ billion grams of solution (for trace components)
$>$ Parts by volume
- Volume \% - volume of solute per 100 volumes of solution $\rightarrow \%(\mathrm{v} / \mathrm{v})$

$$
\text { Volume } \%=\frac{\text { volume of solute }}{\text { volume of solution }} \times 100 \%
$$

- ppmv or ppbv - volume of solute per 1 million or $\mathbf{1}$ billion volumes of solution (used for trace gases in air)
- Mole fraction (\boldsymbol{X}) - ratio of the \# mol of
solute to the total $\#$ mol (solute + solvent $)$

$$
X=\frac{\text { mol of solute }}{\text { mol of solute }+ \text { mol of solvent }}
$$

Example: Calculate the \boldsymbol{X} of NaOH in a solution containing 2.2 g of NaOH in $\mathbf{5 5} \mathbf{g}$ of water.

Example: What is the molality of a solution of methanol in water, if the mole fraction of methanol in it is $\mathbf{0 . 2 5 0}$?
Assume 1 mol of solution:
$\rightarrow \boldsymbol{n}_{\text {meth }}=1 \mathrm{~mol} \times 0.250=0.250 \mathrm{~mol}$
$\rightarrow \boldsymbol{n}_{\text {water }}=\mathbf{1 - 0 . 2 5 0}=\mathbf{0 . 7 5 0} \mathbf{~ m o l}$
$0.750 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times \frac{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \times \frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}=0.0135 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$
$m=\frac{0.250 \mathrm{~mol} \text { methanol }}{0.0135 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}}=18.5 \mathrm{~m}$

- Converting units of concentration

Example: A sample of water is $\mathbf{1 . 1} \times \mathbf{1 0}^{-6} \mathbf{~ M}$ in chloroform $\left(\mathrm{CH}_{3} \mathrm{Cl}\right)$. Express the concentration of chloroform in ppb. (Assume density of 1.0 g / mL)
$1.1 \times 10^{-6} \mathrm{M} \rightarrow \mathbf{1 . 1} \times 10^{-6} \mathrm{~mol} \mathrm{CH}_{3} \mathrm{Cl}$ per 1 L solution
$1.1 \times 10^{-6} \mathrm{~mol} \mathrm{CH}_{3} \mathrm{Cl} \times \frac{50.5 \mathrm{~g} \mathrm{CH}_{3} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{Cl}}=5.6 \times 10^{-5} \mathrm{~g} \mathrm{CH}_{3} \mathrm{Cl}$
$1 \mathrm{~L} \rightarrow 1000 \mathrm{~mL} \times 1.0 \frac{\mathrm{~g}}{\mathrm{~mL}}=1.0 \times 10^{3} \mathrm{~g}$ solution
$\frac{5.6 \times 10^{-5} \mathrm{~g} \mathrm{CH}_{3} \mathrm{Cl}}{1.0 \times 10^{3} \mathrm{~g} \text { solution }} \times 10^{9} \mathrm{ppb}=56 \mathrm{ppb}$

Example: What is the molality of a $\mathbf{1 . 8 3} \mathbf{~ M}$ NaCl solution with density of $\mathbf{1 . 0 7 0} \mathbf{g} / \mathbf{m L}$?
Assume $1 \mathrm{~L}\left(10^{3} \mathrm{~mL}\right)$ of solution:

$$
\rightarrow n_{\mathrm{NaCl}}=1.83 \mathrm{~mol}
$$

mass of solution $=10^{3} \mathrm{~mL} \times \frac{1.070 \mathrm{~g}}{1 \mathrm{~mL}}=1070 \mathrm{~g}$
mass of $\mathrm{NaCl}=1.83 \mathrm{~mol} \times \frac{58.44 \mathrm{~g} \mathrm{NaCl}}{1 \mathrm{~mol}}=107 \mathrm{~g}$
mass of water $=1070 \mathrm{~g}-107 \mathrm{~g}=963 \mathrm{~g}=0.963 \mathrm{~kg}$
$m=\frac{1.83 \mathrm{~mol} \mathrm{NaCl}}{0.963 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}}=1.90 \mathrm{~m}$

Example: What is the molarity of a $\mathbf{1 . 2 0} \mathbf{m ~ K O H}$ solution in water having density of $\mathbf{1 . 0 5} \mathbf{g} / \mathbf{m L}$?
Assume $\left.1 \mathbf{~ k g ~ (1 0 0 0 ~ g) ~ o f ~ s o l v e n t ~ (~} \mathrm{H}_{2} \mathrm{O}\right)$:
$\rightarrow n_{\mathrm{KOH}}=1.20 \mathrm{~mol}$
mass of $\mathrm{KOH}=1.20 \mathrm{~mol} \times \frac{56.1 \mathrm{~g} \mathrm{KOH}}{1 \mathrm{~mol}}=67.3 \mathrm{~g}$
mass of solution $=1000 \mathrm{~g}+67.3 \mathrm{~g}=1067 \mathrm{~g}$
volume of solution $=1067 \mathrm{~g} \times \frac{1 \mathrm{~mL}}{1.05 \mathrm{~g}}=1016 \mathrm{~mL}=1.02 \mathrm{~L}$
$M=\frac{1.20 \mathrm{~mol} \mathrm{KOH}}{1.02 \mathrm{~L} \text { solution }}=1.18 \mathrm{M}$

