13.4 Expressing Solute Concentration

• **Concentration** – the ratio of the quantity of solute to the quantity of solution (or solvent)

Table 13.5 Concentration Definitions

Concentration Term	Ratio
Molovity (M)	amount (mol) of solute
Molanty (M)	volume (L) of solution
Molality (<i>m</i>)	amount (mol) of solute
	mass (kg) of solvent
Parts by mass	mass of solute
	mass of solution
Parts by volume	volume of solute
	volume of solution
Mole fraction (<i>X</i>)	amount (mol) of solute
	amount (mol) of solute + amount (mol) of solvent

• *M* and *m* are nearly the same for dilute aqueous solutions since 1 L of water is about 1 kg, so (liters of solution) \approx (kg of solvent) Example: Calculate *M* and *m* for a solution prepared by dissolving 2.2 g of NaOH in 55 g of water if the density of the solution is 1.1 g/mL. *mol solute* = 2.2 g NaOH $\times \frac{1 \text{ mol NaOH}}{40 \text{ g NaOH}} = 0.055 \text{ mol}$ $m = \frac{0.055 \text{ mol NaOH}}{0.055 \text{ kg water}} = 1.0 \frac{\text{mol}}{\text{kg}} \rightarrow 1.0 \text{ m} (molal)$ $Volume = \frac{mass}{density} = \frac{2.2 \text{ g} + 55 \text{ g}}{1.1 \text{ g/mL}} = 52 \text{ mL}$ $M = \frac{0.055 \text{ mol NaOH}}{0.052 \text{ L solution}} = 1.1 \frac{\text{mol}}{\text{L}} \rightarrow 1.1 \text{ M} (molar)$

 - ppmv or ppbv – volume of solute per 1 million or 1 billion volumes of solution (used for trace gases in air) 			
Mole fraction (X) – ratio of the # mol of			
solute to the total # mol (solute + solvent)			
w _ mol of solute			
$A = \frac{1}{\text{mol of solute} + \text{mol of solvent}}$			
Example: Calculate the <i>X</i> of NaOH in a solution			
containing 2.2 g of NaOH in 55 g of water.			
2.2 g $\frac{1 \text{ mol}}{40 \text{ g}}$ = 0.055 mol NaOH	$55 \text{ g} \frac{1 \text{ mol}}{18 \text{ g}} = 3.1 \text{ mol } \text{H}_2\text{O}$		
$X = \frac{0.055 \text{ mol}}{0.055 \text{ mol}} = 0.018$			
0.055 mol + 3.1 mol			

Example: What is the molality of a solution of methanol in water, if the mole fraction of methanol in it is 0.250? Assume 1 mol of solution: $\rightarrow n_{\text{meth}} = 1 \text{ mol } \times 0.250 = 0.250 \text{ mol}$ $\rightarrow n_{\text{water}} = 1 - 0.250 = 0.750 \text{ mol}$ 0.750 mol H₂O $\times \frac{18.0 \text{ g H}_2\text{O}}{1 \text{ mol H}_2\text{O}} \times \frac{1 \text{ kg}}{10^3 \text{ g}} = 0.0135 \text{ kg H}_2\text{O}$ $m = \frac{0.250 \text{ mol methanol}}{0.0135 \text{ kg H}_2\text{O}} = 18.5 \text{ m}$ • Converting units of concentration Example: A sample of water is 1.1×10^{-6} M in chloroform (CH₃Cl). Express the concentration of chloroform in ppb. (Assume density of 1.0 g/mL) 1.1×10^{-6} M $\rightarrow 1.1 \times 10^{-6}$ mol CH₃Cl per 1 L solution 1.1×10^{-6} mol CH₃Cl $\times \frac{50.5 \text{ g CH}_3\text{Cl}}{1 \text{ mol CH}_3\text{Cl}} = 5.6 \times 10^{-5} \text{ g CH}_3\text{Cl}$ $1 \text{ L} \rightarrow 1000 \text{ mL} \times 1.0 \frac{\text{g}}{\text{mL}} = 1.0 \times 10^3 \text{ g solution}$ $\frac{5.6 \times 10^{-5} \text{ g CH}_3\text{Cl}}{1.0 \times 10^3 \text{ g solution}} \times 10^9 \text{ ppb} = 56 \text{ ppb}$

Example: What is the molality of a 1.83 M NaCl solution with density of 1.070 g/mL? Assume 1 L (10³ mL) of solution: $\rightarrow n_{\text{NaCl}} = 1.83 \text{ mol}$ mass of solution = $10^3 \text{ mL} \times \frac{1.070 \text{ g}}{1 \text{ mL}} = 1070 \text{ g}$ mass of NaCl = $1.83 \text{ mol} \times \frac{58.44 \text{ g NaCl}}{1 \text{ mol}} = 107 \text{ g}$ mass of water = 1070 g - 107 g = 963 g = 0.963 kg $m = \frac{1.83 \text{ mol NaCl}}{0.963 \text{ kg H}_2\text{O}} = 1.90 \text{ m}$ Example: What is the molarity of a 1.20 m KOH solution in water having density of 1.05 g/mL? Assume 1 kg (1000 g) of solvent (H₂O): $\rightarrow n_{\text{KOH}} = 1.20 \text{ mol} \times \frac{56.1 \text{ g KOH}}{1 \text{ mol}} = 67.3 \text{ g}$ mass of KOH = 1.20 mol × $\frac{56.1 \text{ g KOH}}{1 \text{ mol}} = 67.3 \text{ g}$ mass of solution = 1000 g + 67.3 g = 1067 g volume of solution = 1067 g × $\frac{1 \text{ mL}}{1.05 \text{ g}} = 1016 \text{ mL} = 1.02 \text{ L}$ $M = \frac{1.20 \text{ mol KOH}}{1.02 \text{ L solution}} = 1.18 \text{ M}$