13.5 Colligative Properties of Solutions

- Colligative properties - depend on the concentration of solute particles but not on their chemical identity
- The concentration of solute particles depends on the amount of dissolved solute as well as on its ability to dissociate to ions in solution
- Strong electrolytes - dissociate completely (soluble salts, strong acids and bases)
- Weak electrolytes - dissociate partially (weak acids and bases)
- Nonelectrolytes - do not dissociate (many organic compounds)

Nonvolatile Nonelectrolyte Solutions

- No dissociation; no vapor pressure (glucose, sugar, ...)
- Vapor pressure lowering ($\Delta \boldsymbol{P}$) - the vapor pressure of the solvent over the solution $\left(\boldsymbol{P}_{\text {solv }}\right)$ is always lower than the vapor pressure over the pure solvent $\left(\boldsymbol{P}_{\text {solv }}^{o}\right)$ at a given temperature

Pure solvent

Least disordered
disorder $\uparrow \uparrow$
Sapor

Solution
More disordered

\Rightarrow disorder \uparrow
\Rightarrow The solution has a lesser tendency to vaporize so
its vapor pressure is lower

Example: The vapor pressure of water over a solution of a nonelectrolyte is $\mathbf{1 6 . 3 4}$ torr at $20^{\circ} \mathrm{C}$. Determine the mole fraction of the solute, if the equilibrium vapor pressure of water at $20^{\circ} \mathrm{C}$ is

17.54 torr.

$\rightarrow P_{\text {solv }}=16.34$ torr $\quad P_{\text {solv }}^{o}=17.54$ torr
$\rightarrow X_{\text {solute }}=$?
$X_{\text {solute }}=\frac{\Delta P}{P_{\text {solv }}^{o}}=\frac{(17.54-16.34) \text { torr }}{17.54 \text { torr }}=0.0684$

- Most real (non-ideal) solutions behave as ideal at low concentrations (less than 0.1 m for nonelectrolytes and less than 0.01 m for electrolytes)
- Boiling point elevation $\left(\Delta T_{b}\right)$ and freezing point depression (ΔT_{f})
- The solution boils at a higher temperature compared to the pure solvent (the solution has lower vapor \boldsymbol{P} so it needs higher \boldsymbol{T} to boil)
- The solution freezes at a lower temperature compared to the pure solvent

Solid Least disordered	disorder \uparrow	Pure solvent More disordered
	disorder $\uparrow \uparrow$	Solution Most disordered

\Rightarrow The solution has a greater tendency to melt so its melting (freezing) point is lower

- Osmotic pressure (П)
- Osmosis - the flow of solvent trough a semipermeable membrane from a less concentrated into a more concentrated solution
-Semipermeable membrane - the solute particles can't pass through

$-\Pi$ is the hydrostatic pressure necessary to stop the net flow of solvent caused by osmosis

$$
\Pi=M R T \quad \Pi=\left(n_{\text {solute }} / V_{\text {soln }}\right) R T
$$

$\rightarrow \boldsymbol{M}$ - molarity of solution
$\rightarrow \boldsymbol{R}$ - gas constant; \boldsymbol{T} - temperature in \mathbf{K}

- The equation is the equivalent of the ideal gas law ($\boldsymbol{P}=\boldsymbol{n R T} / \boldsymbol{V}$) applied to solutions
- Π is the pressure the solute would exert if it were an ideal gas occupying alone the volume of the solution
- Osmosis is essential for controlling the shape and size of biological cells and purifying blood through dialysis
- Reverse osmosis - reversing the flow by applying external pressure (used to purify sea water)

Example: What is the minimum pressure that must be applied in order to purify a $\mathbf{0 . 8 2} \mathbf{M}$ nonelectrolyte solution by reverse osmosis at $25^{\circ} \mathrm{C}$?
\rightarrow Calc. Π (the necessary pressure must be $\geq \Pi$)
$\Pi=M R T=0.82 \frac{\mathrm{~mol}}{\mathrm{~L}} \times 0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 298 \mathrm{~K}$
$\Pi=20 \mathrm{~atm}$
\rightarrow This pressure is equivalent to a 200 meters ($1 / 8$ mile) tall water column!

